首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   6篇
  国内免费   1篇
  2019年   1篇
  2017年   5篇
  2015年   1篇
  2013年   1篇
  2009年   2篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
  • 1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM).
  • 2 Glacial/early Holocene (26–10 14C kyr bp or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south‐eastern California/south‐western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ~4.0 14C kyr bp . Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr bp . Hexaploids appeared by 8.5 14C kyr bp in the lower Colorado River Basin, reaching their northernmost limits (~37°N) in the Mohave Desert between 5.6 and 3.9 14C kyr bp .
  • 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations.
  • 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture.
  相似文献   
2.
3.
4.
5.
The present paper reviews advances in the study of two major intercontinental disjunct biogeographic patterns: (i) between Eurasian and western North American deserts with the Mediterranean climate (the Madrean- Tethyan disjunctions); and (ii) between the temperate regions of North and South America (the amphitropical disjunctions). Both disjunct patterns have multiple times of origin. The amphitropical disjunctions have largely resulted from long-distance dispersal, primarily from the Miocene to the Holocene, with available data indicating that most lineages dispersed from North to South America. Results of recent studies on the Mediterranean disjuncts between the deserts of Eurasia and western North America support the multiple modes of origin and are mostly consistent with hypotheses of long-distance dispersal and the North Atlantic migration. Axelrod's Madrean-Tethyan hypothesis, which implies vicariance between the two regions in the early Tertiary, has been favored by a few studies. The Beringian migration corridor for semiarid taxa is also supported in some cases.  相似文献   
6.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   
7.
Bipolar disjunct distributions are a fascinating biogeographic pattern exhibited by about 30 vascular plants, whose populations reach very high latitudes in the northern and southern hemispheres. In this review, we first propose a new framework for the definition of bipolar disjunctions and then reformulate a list of guiding principles to consider how to study bipolar species. Vicariance and convergent evolution hypotheses have been argued to explain the origin of this fragmented distribution pattern, but we show here that they can be rejected for all bipolar species, except for Carex microglochin. Instead, human introduction and dispersal (either direct or by mountain‐hopping)facilitated by standard and nonstandard vectorsare the most likely explanations for the origin of bipolar plant disjunctions. Successful establishment after dispersal is key for colonization of the disjunct areas and appear to be related to both intrinsic (e.g., self‐compatibility) and extrinsic (mutualistic and antagonistic interactions) characteristics. Most studies on plant bipolar disjunctions have been conducted in Carex (Cyperaceae), the genus of vascular plants with the largest number of bipolar species. We found a predominant north‐to‐south direction of dispersal, with an estimated time of diversification in agreement with major cooling events during the Pliocene and Pleistocene. Bipolar Carex species do not seem to depend on specialized traits for long‐distance dispersal and could have dispersed through one or multiple stochastic events, with birds as the most likely dispersal vector.  相似文献   
8.
Leandra s.str. clade has around 200 species nearly restricted to eastern Brazil. Most species in this group are narrow endemics, but a few present striking disjunct distributions between eastern Brazil and Andes or Mesoamerica. Given the predominantly “montane” distribution observed in most Leandra s.str., we hypothesized that cyclical range expansions during colder Pleistocene periods, followed by local extinctions during warmer interglacial periods, could have shaped the distribution of the disjunct species in this clade. In order to gather support for this biogeographical scenario in a phylogenetic framework, the species that occur outside eastern Brazil were identified, ages of the dispersal events estimated, climatic niche models for the disjuncts were generated, and the climatic envelope of these species compared. Our results place all dispersal events from eastern Brazil to Andes or Mesoamerica during the Pleistocene. Climatic niche modeling indicates a potential range expansion during the Pleistocene colder times for the disjunct species. Although the surpassing of the “dry diagonal” could have been facilitated during glacial periods, this open corridor is an effective barrier for Leandra, given the reduced number of species that dispersed beyond an eastern Brazilian origin. Additionally, the disjunct species do not present significant differences in their climatic envelopes to the non‐disjunct species. Our results provide support to a short‐dispersion/stepping‐stone migration scenario to account for the observed disjunctions in this clade. Range expansions during Pleistocene colder periods followed by local extinctions during interglacial periods could have shaped the distribution of Leandra s.str.  相似文献   
9.
Many boreal and polar lichens occupy bipolar distributional ranges that frequently extend into high mountains at lower latitudes. Although such disjunctions are more common among lichens than in other groups of organisms, the geographic origin of bipolar lichen taxa, and the way and time frame in which they colonized their ranges have not been studied in detail. We used the predominantly vegetative, widespread lichen Cetraria aculeata as a model species. We surveyed the origin and history of its bipolar pattern using population genetics, phylogenetic and genealogical reconstruction methods. Cetraria aculeata originated in the Northern Hemisphere and dispersed southwards during the Pleistocene. The genetic signal suggests a Pleistocene dispersive burst in which a population size expansion concurred with the acquisition of a South‐American range that culminated in the colonization of the Antarctic.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号