首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2016年   1篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The ultrastructure of the amphiesma during pellicle formation was investigated in two species of Dinophyceae, Amphidinium rhynchocephalum Anissimowa and Heterocapsa niei (Loeblich) Morrill & Loeblich using thin sections. In both species the amphiesma consists of an outermost membrane (i.e. the plasma membrane) underlain by amphiesmal vesicles. In A. rhynchocephalum the latter appear empty whereas each amphiesmal vesicle in H. niei contains a thecal plate and a thin, amorphous layer (dark-staining layer) located between, the thecal plate and the inner amphiesmal vesicle membrane. When cells of both taxa are carefully fixed, amphiesmal vesicles are always separate entities (i.e. the sutures are undisrupted). During ecdysis the following amphiesmal components are shed: the plasma membrane, the outer amphiesmal vesicle membrane, and in H. niei the thecal plates. The inner membranes of the amphiesmal vesicles then fuse with each other and form a continuous membrane (termed pellicle membrane) that remains tightly oppressed to an underlying amorphous layer (pellicular layer). In A. rhynchocephalum the pellicular layer is already present in vegetative non-ecdysed cells, whereas in H. niei it forms during ecdysis beneath the pellicle membrane. During ecdysis in H. niei, material from the dark-staining layer precipitates on the outer surface of the pellicle membrane, where it forms a characteristic honeycomb pattern. The new observations are incorporated into a revised model of pellicle formation in dinoflagellates and contrasted with earlier proposals.  相似文献   
2.
3.
The planktonic dinoflagellate Ptychodiscus noctiluca combined distinctive morphological features such as a disk‐shaped anteroposteriorly compressed cell body and an apical carina, together with a flexible and tough cell covering, suggesting intermediate characteristics between thecate and naked dinoflagellates. Ptychodiscus noctiluca was examined by light, epifluorescence, and scanning electron microscopy from specimens collected in the Mediterranean Sea and the North and South Atlantic Ocean. Ptychodiscus noctiluca showed a straight apical groove that bisected the carina, a cell covering with a polygonal surface reticulum, nucleus without capsule, sulcal intrusion in the episome, sulcal ventral flange, and yellowish‐green chloroplasts that are shared characters with Brachidinium/Karenia. The cell division was the typical binary fission of gymnodinioid dinoflagellates, although exceptionally in an oblique transversal axis. We examined the intraspecific variability during incubation experiments. In the fattened cells, termed as Ptychodiscus carinatus, chloroplasts transformed into dark granules, and the cell acquired the swollen and smaller stage, termed as P. inflatus. Ptychodiscus carinatus, P. inflatus, and Diplocystis antarctica are synonyms of P. noctiluca. Molecular phylogeny based on the SSU rDNA sequence revealed that Ptychodiscus branched within the short‐branching dinokaryotic dinoflagellates as an independent lineage with affinity to Brachidinium/Karenia and Karlodinium/Takayama in a generally poorly resolved clade. Our results indicated that the order Ptychodiscales, established for unarmored dinoflagellates with a strongly developed pellicle, has artificially grouped thecate dinoflagellates (Kolkwitziella, Herdmania), naked dinoflagellates with thick cell covering (Balechina, Cucumeridinium) and other insufficiently known unarmored genera with typical cell coverings (Brachidinium, Ceratoperidinium).  相似文献   
4.
I examined the heterotrophic non-armored dinoflaget-late Actiniscus pentasterias (Ehrenberg) Ehrenberg by light and electron microscopy. Actiniscus pentasterias contains an internal skeleton consisting of two star-like siliceous elements. Special emphasis is given to the flagellar apparatus, the nucleus, and a new type of extrusome, named a docidosome. A three dimensional model of the flagerllar apparatus includes a fibrous nuclear connnective, a posterior striated root, and a dorsal striated component of the longitudinal microtabular root. The nucleus is surrounded by a conspicuous fibrous lamina, also visible in the light microscope. The nuclear pores are situated in annulated invaginations of the nuclear envelope, increasing the nuclear surface area by 15–25%. The docidosomes are rod-shaped membrane-bound structures that terminate in a distinct proximal head. They show very complex substructure, consisting of an inner medulla with highly ordered paired ribbons and an outer cortex.  相似文献   
5.
Forty-five species of dinoflagellates were surveyed for the presence of a pellicular layer in the amphiesma or cell covering. Such a layer was found in 15 of the 20 genera studied. Half the pellicles tested were resistant to acetolysis and may contain a sporopollenin-like material similar to that of some dinoflagellate cyst walk. Most organisms which formed pellicles were capable of reinforcing this layer with cellulose. Pellicles of Heterocapsa niei (Loeblich) Morrill & Loeblich and Scrippsiella trochoidea (Stein) Loeblich were studied with the electron microscope. Evidence is presented indicating that dividing cells of S. trochoidea from new walls while still enclosed in the parental pellicular layer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号