首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   1篇
  2013年   2篇
  2007年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Cytochrome P450 mono‐oxygenases (P450) are versatile enzymes which play essential roles in C‐source assimilation, secondary metabolism, and in degradations of endo‐ and exogenous xenobiotics. In humans, several P450 isoforms constitute the largest part of phase I metabolizing enzymes and catalyze oxidation reactions which convert lipophilic xenobiotics, including drugs, to more water soluble species. Recombinant human P450s and microorganisms are applied in the pharmaceutical industry for the synthesis of drug metabolites for pharmacokinetics and toxicity studies. Compared to the membrane‐bound eukaryotic P450s, prokaryotic ones exhibit some advantageous features, such as high stability and generally easier heterologous expression. Here, we describe a novel P450 from Streptomyces platensis DSM 40041 classified as CYP107L that efficiently converts several commercial drugs of various size and properties. This P450 was identified by screening of actinobacterial strains for amodiaquine and ritonavir metabolizing activities, followed by genome sequencing and expression of the annotated S. platensis P450s in Escherichia coli. Performance of CYP107L in biotransformations of amodiaquine, ritonavir, amitriptyline, and thioridazine resembles activities of the main human metabolizing P450s, namely CYPs 3A4, 2C8, 2C19, and 2D6. For application in the pharmaceutical industry, an E. coli whole‐cell biocatalyst expressing CYP107L was developed and evaluated for preparative amodiaquine metabolite production.  相似文献   
2.
In the scenario of drug-resistant Plasmodium falciparum malaria combination therapy represents an effective approach. Artemisinin and its derivatives are of special interest because they represent the most effective group of compounds against multidrug-resistant malaria with a rapid onset of action and a short half-life. Interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine were therefore investigated against three strains of P. falciparum using a 48-h in vitro culture assay. Two of the strains were chloroquine sensitive and one was partially chloroquine resistant. Observed effective concentrations (O) of the combined compounds at different concentration ratios were calculated for different degrees of inhibition (EC50, EC90, EC99) and compared to expected calculated effective concentrations (E) using a probit method. Synergism with mean O/E EC90 values of 0.25 and 0.8 were found with the combination of artemisinin and the two Mannich bases, amodiaquine and pyronaridine, respectively, whereas chloroquine showed addition with a mean value of 1.2. Although both amodiaquine and chloroquine are 4-aminoquinolines, their interaction with artemisinin appears to be different. The combination of artemisinin with amodiaquine represents an important option for the treatment of falciparum malaria.  相似文献   
3.
Intraerythrocytic Plasmodium produces large amounts of toxic heme during the digestion of hemoglobin, a parasite specific pathway. Heme is then partially biocristallized into hemozoin and mostly detoxified by reduced glutathione. We proposed an in vitro micro assay to test the ability of drugs to inhibit heme-glutathione dependent degradation. As glutathione and o-phthalaldehyde form a fluorescent adduct, we followed the extinction of the fluorescent signal when heme was added with or without antimalarial compounds. In this assay, 50 microM of amodiaquine, arthemether, chloroquine, methylene blue, mefloquine and quinine inhibited the interaction between glutathione (50 microM) and heme (50 microM), while atovaquone did not. Consequently, this test could detect drugs that can inhibit heme-GSH degradation in a fast, simple and specific way, making it suitable for high throughput screening of potential antimalarials.  相似文献   
4.
Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.  相似文献   
5.
In this study, the in vitro effects of amodiaquine (AQ) monotherapy on the egg output of paired adult Schistosoma mansoni worms and their survival during in vitro culture were assessed. In addition, the gross morphological alterations of male and female worms caused by AQ were visually observed under a dissecting microscope. AQ significantly reduced the daily egg output of paired adult S. mansoni worms following incubation for 14 days at 1-5 µg/mL, but not at 0.5 µg/mL, compared with the control group. AQ also reduced the survival of male and female worms at concentrations of 2 and 5 µg/mL, respectively. Moreover, exposure to 5 µg/mL AQ caused severe swelling and/or localisation of black content in the body of all male and female worms within one or two days of incubation; subsequently, shrinkage in the male worms and elongation in the female worms were observed. The initial morphological alterations caused by AQ occurred along the intestinal tract of the male and female worms. To our knowledge, this is the first study to report not only the efficacy of AQ at concentrations lower than 5 µg/mL on paired adult S. mansoni worms, but also the effects of AQ on the intestinal tracts of worms in in vitro culture.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号