首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2325篇
  免费   92篇
  国内免费   137篇
  2023年   23篇
  2022年   26篇
  2021年   28篇
  2020年   44篇
  2019年   55篇
  2018年   56篇
  2017年   43篇
  2016年   44篇
  2015年   38篇
  2014年   64篇
  2013年   138篇
  2012年   63篇
  2011年   122篇
  2010年   76篇
  2009年   87篇
  2008年   80篇
  2007年   108篇
  2006年   101篇
  2005年   100篇
  2004年   79篇
  2003年   80篇
  2002年   67篇
  2001年   62篇
  2000年   60篇
  1999年   63篇
  1998年   49篇
  1997年   36篇
  1996年   47篇
  1995年   32篇
  1994年   55篇
  1993年   42篇
  1992年   42篇
  1991年   38篇
  1990年   41篇
  1989年   42篇
  1988年   23篇
  1987年   34篇
  1986年   21篇
  1985年   47篇
  1984年   52篇
  1983年   24篇
  1982年   29篇
  1981年   26篇
  1980年   34篇
  1979年   27篇
  1978年   20篇
  1977年   26篇
  1976年   17篇
  1974年   12篇
  1973年   13篇
排序方式: 共有2554条查询结果,搜索用时 625 毫秒
1.

With the view of incorporating quaternary ammonium salts (QAs) in marine paints, nineteen of these were tested against a community of marine bacteria, at a temperature and salinity close to those of seawater. The concentration of QAs and the length of the main substituting chain are the main parameters affecting the growth and adhesion of bacteria, but the nature of (i) the other chains, (ii) the counter‐ion and (iii) the rings when inserted in the QA molecule also influenced the bacteria. Increasing the concentration of the QAs decreased the growth rate of the bacteria, the maximum cell density at the plateau and the rate of adhesion. The effect of increasing the length of the main chain depended on the range of carbon numbers. Below 7 carbon atoms, the growth rate was not significantly modified, but the numbers of cells at the plateau increased in contrast with the adhesion rate which decreased rapidly. Increasing the length of the chain to between 7 and 16 carbon atoms resulted in a decrease in the growth rate, a decrease and then a stabilisation in the numbers of cells at the plateau and no further change in the adhesion rate. Possibly an increase in growth rate, adhesion rate and in the numbers of cells at the plateau may occur above 16 carbon atoms. In contrast, the length of the other chains influenced positively the cell concentration at the plateau, and more generally the efficiency of QAs decreased substantially when these chains had the same numbers of carbon atoms. QAs with iodide as counter‐ion were more effective than those with chloride or bromide and phenyl was more effective than benzyl as rings inserted in QAs. The minimum inhibitory concentrations (MIC) were often very high if compared to standard methods with laboratory strains, and this can be tentatively explained by the dominance of Gram— bacteria in the community assayed, the development of resistant strains in the cultures used with time and the presence of organic matter in the culture medium.  相似文献   
2.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   
3.
Transglutaminase 2 (TG2) has been implicated in wound healing, cellular differentiation, apoptosis and cell survival. TG2 activity increases following acute and chronic liver injury; however, the role of TG2 in tumors, is controversial. TG2 is a retinoid-inducible enzyme. We investigated the effects of retinyl acetate (RA) on the activity and levels of TG2 during the initiation and promotion stages of liver cancer. p-Dimethylaminoazobenzene (p-DAB) was used as initiator and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) was used as promoter in our model of carcinogenesis. Rats were divided into four groups of 24: control, corn oil control, p-DAB + TCDD, and p-DAB + TCDD + RA. Six rats from each group were sacrificed at days 30, 60, 90 and 120. TG2 activity decreased in the p-DAB + TCDD treated group, but TG2 immunostaining scores did not change by days 90 and 120. Neither TG2 enzyme activity nor the immunostaining score of TG2 protein changed in the tissues of the p-DAB + TCDD + RA group by days 90 and 120. TG2 activity was not be ameliorated by RA during the initiation or promotion stages of carcinogen induced liver cancer.  相似文献   
4.
5.
Minhang Xin 《Steroids》2010,75(1):53-7742
An efficient and practical scheme to synthesize 2-methoxyestradiol has been developed. The key step was the copper-mediated methoxylation using ethyl acetate as a co-catalyst to introduce a methoxyl group. These synthetic procedures of four steps from 17β-estradiol as starting material gave 2-methoxyestradiol with a 61% overall yield.  相似文献   
6.
Even in nitrogen‐replete ecosystems, microhabitats exist where local‐scale nutrient limitation occurs. For example, coastal waters of the northeastern Pacific Ocean are characterized by high nitrate concentrations associated with upwelling. However, macroalgae living in high‐zone tide pools on adjacent rocky shores are isolated from this upwelled nitrate for extended periods of time, leading to nutrient limitation. When high‐intertidal pools are isolated during low tide, invertebrate‐excreted ammonium accumulates, providing a potential nitrogen source for macroalgae. I quantified the influence of mussels (Mytilus californianus Conrad) on ammonium accumulation rates in tide pools. I then evaluated the effects of ammonium loading by mussels on nitrogen assimilation and growth rates of Odonthalia floccosa (Esp.) Falkenb., a common red algal inhabitant of pools on northeastern Pacific rocky shores. Odonthalia was grown in artificial tide pool mesocosms in the presence and absence of mussels. Mesocosms were subjected to a simulated tidal cycle mimicking emersion and immersion patterns of high‐intertidal pools on the central Oregon coast. In the presence of mussels, ammonium accumulated more quickly in the mesocosms, resulting in increased rates of nitrogen assimilation into algal tissues. These increased nitrogen assimilation rates were primarily associated with higher growth rates. In mesocosms containing mussels, Odonthalia individuals added 41% more biomass than in mesocosms without mussels. This direct positive effect of mussels on macroalgal biomass represents an often overlooked interaction between macroalgae and invertebrates. In nutrient‐limited microhabitats, such as high‐intertidal pools, invertebrate‐excreted ammonium is likely an important local‐scale contributor to macroalgal productivity.  相似文献   
7.
We assessed the extent to which plants can acquire amino acids when supplied as single N-sources or when plants have access to a mixture of amino- and inorganic N sources. Because the uptake of different N-sources is temperature-dependent, the effects of temperature on amino-N uptake were also tested. Lolium perenne (perennial rye-grass) was grown hydroponically at 11 °C or 21 °C. Uptake of N was determined using 15N tracers at the growth temperature from solutions containing either nitrate, ammonium or glycine as single N sources and from a mixture containing all three N-forms. Estimates of the relative importance of amino acids such as glycine to the total N budget of plants will have been underestimated in studies where uptake was determined in single source solutions compared with those from solutions containing a mixture of N-forms. The proportion of total N acquired from the mixed N source as ammonium increased as temperature was reduced. Regarding the uptake and initial metabolism of glycine, uptake was probably the rate limiting step at 11 °C whilst it was the metabolism of glycine to serine at 21 °C. Although 15N incorporation into the plant amino-N pool was generally in proportion to the abundance of individual amino acids, its incorporation into the glycine pool was sometimes significantly less than predicted.  相似文献   
8.
P. lanceolata andP. major were grown in culture solutions with nitrate or ammonium as the nitrogen source. Dry matter accumulation in the shoot was faster with nitrate than with ammonium, whilst that of the roots was not affected by the nitrogen source. As a consequence, the shoot-to-root ratio was lower with ammonium than with nitrate. InP. lanceolata, dry matter percentage of shoot and root tissue was lower with nitrate nutrition, suggesting better elongation growth than with ammonium. However, in shoot tissue ofP. major the opposite was found. The rate of root respiration declined with time, and this was almost completely due to a declining activity of the alternative path, which amounted to about 30–60% of total root respiration. Respiration via the cytochrome path was for a part of time slightly increased by ammonium, whereas the activity of the alternative path was strongly enhanced. The concentration of ethanol-soluble carbohydrates (SC) in the roots of both species was higher when nitrate was used, but no difference in the concentration of starch was found. When the plants were transferred from one nitrogen source to the other, many parameters, including the concentration of nitrate and chloride, and the shoot to root ratio, adjusted to the new situation in both species. Grassland Species Research Group, Publication no. 116.  相似文献   
9.
A sand-culture experiment was conducted to study the influence of a deficiency of and an excess of micronutrients on the uptake and assimilation of NH 4 + and NO 3 ions by maize. By studying the fate of15N supplied as15NH4NO3 or NH4 15NO3, it was demonstrated that in maize plants NH4−N was absorbed in preference to NO 3 −N. The uptake and distribution of N originating from both NH 4 + and NO 3 was considerably modified by deficiency of, or an excess of, micronutrients in the growth medium. The translocation of NH 4 + −N from roots to shoots was relatively less than that of NO 3 −N. Deficiency as well as excessive amounts of micronutrients, in the growth medium, substantially reduced the translocation of absorbed N into protein. This effect was more pronounced in the case of N supplied as NO 3 . Amino-N was the predominant non-protein fraction in which N from both NH 4 + and NO 3 tended to accumulate. The next important non-protein fractions were NO 3 −N when N was supplied as NO 3 and amide-N when NH 4 + was the source. The relative accumulation of15N into different protein fractions was also a function of imposed micronutrient levels.  相似文献   
10.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号