首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   7篇
  国内免费   19篇
  2023年   3篇
  2022年   15篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   12篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   13篇
  2009年   20篇
  2008年   17篇
  2007年   24篇
  2006年   11篇
  2005年   17篇
  2004年   4篇
  2003年   2篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   12篇
  1994年   1篇
  1993年   10篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   8篇
  1978年   1篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
1.
Summary The fatty acid synthetase (FAS) gene FAS1 of the alkane-utilizing yeast Yarrowia lipolytica was cloned and sequenced. The gene is represented by an intron-free reading frame of 6228 by encoding a protein of 2076 amino acids and 229980 Da molecular weight. This protein exhibits a 58% sequence similarity to the corresponding Saccharomyces cerevisiae FAS -subunit. The sequential order of the five FAS1-encoded enzyme domains, acetyl transferase, enoyl reductase, dehydratase and malonyl/palmityl-transferase, is co-linear in both organisms. This finding agrees with available evidence that the functional organization of FAS genes is similar in related organisms but differs considerably between unrelated species. In addition, previously reported conflicting data concerning the 3 end of S. cerevisiae FAS1 were re-examined by genomic and cDNA sequencing of the relevant portion of the gene. Thereby, the translational stop codon was shown to lie considerably downstream of both published termination sites. The S. cerevisiae FAS1 gene thus has a corrected length of 6153 by and encodes a protein of 2051 amino acids and 228667 Da molecular weight.  相似文献   
2.
The refined crystal structure of the ternary complex of yeast Phe-tRNAPhe, Thermus aquaticus elongation factor EF-Tu and the non-hydrolyzable GTP analog, GDPNP, revelas many details of the EF-Tu recognition of aminoacylated tRNA (aa-tRNA). EF-Tu-GTP recognizes the aminoacyl bond and one side of the backbone fold of the acceptor helix and has a high affinity for all ordinary elongator aa-tRNAs by binding to this aa-tRNA motif. Yet, the binding of deacylated tRNA, initiator tRNA, and selenocysteine-specific tRNA (tRNASec) is effectively discriminated against. Subtle rearrangements of the binding pocket may occur to optimize the fit to any side chain of the aminoacyl group and interactions with EF-Tu stabilize the 3′-aminoacyl isomer of aa-tRNA. A general complementarity is observed in the location of the binding sites in tRNA for synthetases and for EF-Tu. The complex formation is highly specific for the GTP-bound conformation of EF-Tu, which can explain the effects of various mutants.  相似文献   
3.
On the basis of protein modification studies and primary structure comparison, we propose that the SKS sequence within the KMSKS signature of the class 1 aminoacyl-tRNA synthetases corresponds to the GKT(or S) sequence considered as a signature of the nucleotide triphosphate-binding site of many proteins.  相似文献   
4.
The class I glutamine (Gln) tRNA synthetase interacts with the anticodon and acceptor stem of glutamine tRNA. RNA hairpin helices were designed to probe acceptor stem and anticodon stem-loop contacts. A seven-base pair RNA microhelix derived from the acceptor stem of tRNAGln was aminoacylated by Gln tRNA synthetase. Variants of the glutamine acceptor stem microhelix implicated the discriminator base as a major identity element for glutaminylation of the RNA helix. A second RNA microhelix representing the anticodon stem-loop competitively inhibited tRNAGln charging. However, the anticodon stem-loop microhelix did not enhance aminoacylation of the acceptor stem microhelix. Thus, transduction of the anticodon identity signal may require covalent continuity of the tRNA chain to trigger efficient aminoacylation.  相似文献   
5.
The seven class 2 aminoacyl-tRNA synthetases that are α2 dimers have previously been divided by sequence homology into class 2a (seryl-, threonyl-, prolyl- and histidyl-) and class 2b (aspartyl-, asparaginyl- and lysyl-). It has been more difficult to classify the glycyl-, phenylalanyl- and alanyl-tRNA synthetases which have different subunit stoichiometries and which did not apparently contain all three canonical class 2 motifs. New sequence and structural information relating to the three problematic synthetases will be discussed permitting a step forward to be taken in the understanding of the evolutionary relationships between the class 2 synthetases.  相似文献   
6.
Two aspects of the evolution of aminoacyl-tRNA synthetases are discussed. Firstly, using recent crystal structure information on seryl-tRNA synthetase and its substrate complexes, the coevolution of the mode of recognition between seryl-tRNA synthetase and tRNAser in different organisms is reviewed. Secondly, using sequence alignments and phylogenetic trees, the early evolution of class 2 Amnoacyl-tRNA synthetases is traced. Arguments are presented to suggest that synthetases are not the oldest of protein enzymes, but survived as RNA enzymes during the early period of the evolution of protein catalysts. In this view, the relatedness of the current synthetases, as evidenced by the division into two classes with their associated subclasses, reflects the replacement of RNA synthetases by protein synthetases. This process would have been triggered by the acquisition of tRNA 3 end charging activity by early proteins capable of activating small molecules (e.g., amino acids) with ATP. If these arguments are correct, the genetic code was essentially frozen before the protein synthetases that we know today came into existence. Correspondence to: S. CusackBased on a presentation made at a workshop-Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code-held at Berkeley, CA, July 17–20, 1994  相似文献   
7.
We describe, on the molecular level, a possible fuzzy and primordial translation apparatus capable of synthesizing polypeptides from nucleic acids in a world containing a mixture of coevolving molecules of RNA and proteins already arranged in metabolic cycles (including cofactors). Close attention is paid to template-free systems because they are believed to be the immediate ancestors of this primordial translation apparatus. The two classes of amnoacyl-tRNA synthetases (aaRSs), as seen today, are considered as the remnants of such a simple imprecise translation apparatus and are used as guidelines for the construction of the model. Earlier theoretical work by Bedian on a related system is invoked to show how specificity and stability could have been achieved automatically and rather quickly, starting from such an imprecise system, i.e., how the encoded synthesis of proteins could have appeared. Because of the binary nature of the underlying proto-code, the first genetically encoded proteins would then have been alternating copolymers with a high degree of degeneracy, but not random. Indeed, a clear signal for alternating hydrophobic and hydrophilic residues in present-day protein sequences can be detected. Later evolution of the genetic code would have proceeded along lines already discussed by Crick. However, in the initial stages, the translation apparatus proposed here is in fact very similar to the one postulated by Woese, only here it is given a molecular framework. This hypothesis departs from the paradigm of the RNA world in that it supposes that the origin of the genetic code occurred after the apparition of some functional (statistical) proteins first. Implications for protein design are also discussed.  相似文献   
8.
The addition of glycerol, sucrose, or other diol-containing reagents to solutions of aminoacyl-tRNA (aa-tRNA) substantially increased the rate of hydrolysis of the aminoacyl ester bond. Glycerol at 4.9% (v/v) doubled the rate of deacylation for several aa-tRNAs and peptidyl-tRNAs, including fMet-tRNAMetf, while 1% (v/v) glycerol increased the deacylation rate by 20%. This effect was not caused by a nuclease contamination, and tRNA deacylated in the presence of glycerol could be fully recharged. The deacylation of aa-tRNA was accelerated by glycerol and sucrose even in the presence of EF-Tu X GTP. In addition, the extent of tRNA aminoacylation was reduced when glycerol was present at concentrations above 2% (v/v). Thus, glycerol and sucrose are not necessarily inert or neutral additions to an in vitro incubation.  相似文献   
9.
The effect of cycloheximide on the chloroplastic, cytoplasmic and mitochondrial phenylalanyltransferRNA synthetases of Euglena gracilis was studied by growing both logarithmic and stationary phase cultures in the presence of the antibiotic. Enzyme activity was measured relative to untreated control cultures. At very low concentrations of cycloheximide (1 g/ml), all three log phase enzymes showed an increase in activity of 40–50%. At slightly higher concentrations (2.5 g/ml), the phenylalanyl-tRNA synthetase activities were comparable to those of the control cultures. At a cycloheximide concentration of 5g/ml the enzyme activities from stationary phase cultures showed only very slight decreases (5–20%). The cytoplasmic and mitochondrial enzymes behaved similarly in log phase cultures at this concentration. However, the chloroplastic phenylalanyl-tRNA synthetase from log phase cultures treated with 5g/ml cycloheximide showed a marked decrease in activity (70%). A further increase in antibiotic concentration to 10g/ml resulted in significant losses of activity of all three enzymes, from both growth stages. The implications of the data with regard to identification of the site(s) of chloroplast enzyme synthesis are discussed.  相似文献   
10.
A solid-phase immunoadsorbent specific for terminal deoxynucleotidyl transferase has been prepared. The enzyme from calf thymus and acute lymphoblastic leukemia cells binds to columns of this material. Bound enzyme can be eluted in an active form. Selective and rapid purification of terminal deoxynucleotidyl transferase from crude extracts of cells containing this enzyme can be achieved by this method since the immunoadsorbent has no affinity for other cellular DNA polymerases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号