首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   4篇
  国内免费   12篇
  2023年   2篇
  2022年   9篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2010年   12篇
  2009年   15篇
  2008年   10篇
  2007年   18篇
  2006年   6篇
  2005年   11篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1973年   1篇
  1971年   1篇
排序方式: 共有188条查询结果,搜索用时 140 毫秒
1.
The refined crystal structure of the ternary complex of yeast Phe-tRNAPhe, Thermus aquaticus elongation factor EF-Tu and the non-hydrolyzable GTP analog, GDPNP, revelas many details of the EF-Tu recognition of aminoacylated tRNA (aa-tRNA). EF-Tu-GTP recognizes the aminoacyl bond and one side of the backbone fold of the acceptor helix and has a high affinity for all ordinary elongator aa-tRNAs by binding to this aa-tRNA motif. Yet, the binding of deacylated tRNA, initiator tRNA, and selenocysteine-specific tRNA (tRNASec) is effectively discriminated against. Subtle rearrangements of the binding pocket may occur to optimize the fit to any side chain of the aminoacyl group and interactions with EF-Tu stabilize the 3′-aminoacyl isomer of aa-tRNA. A general complementarity is observed in the location of the binding sites in tRNA for synthetases and for EF-Tu. The complex formation is highly specific for the GTP-bound conformation of EF-Tu, which can explain the effects of various mutants.  相似文献   
2.
On the basis of protein modification studies and primary structure comparison, we propose that the SKS sequence within the KMSKS signature of the class 1 aminoacyl-tRNA synthetases corresponds to the GKT(or S) sequence considered as a signature of the nucleotide triphosphate-binding site of many proteins.  相似文献   
3.
The seven class 2 aminoacyl-tRNA synthetases that are α2 dimers have previously been divided by sequence homology into class 2a (seryl-, threonyl-, prolyl- and histidyl-) and class 2b (aspartyl-, asparaginyl- and lysyl-). It has been more difficult to classify the glycyl-, phenylalanyl- and alanyl-tRNA synthetases which have different subunit stoichiometries and which did not apparently contain all three canonical class 2 motifs. New sequence and structural information relating to the three problematic synthetases will be discussed permitting a step forward to be taken in the understanding of the evolutionary relationships between the class 2 synthetases.  相似文献   
4.
The addition of glycerol, sucrose, or other diol-containing reagents to solutions of aminoacyl-tRNA (aa-tRNA) substantially increased the rate of hydrolysis of the aminoacyl ester bond. Glycerol at 4.9% (v/v) doubled the rate of deacylation for several aa-tRNAs and peptidyl-tRNAs, including fMet-tRNAMetf, while 1% (v/v) glycerol increased the deacylation rate by 20%. This effect was not caused by a nuclease contamination, and tRNA deacylated in the presence of glycerol could be fully recharged. The deacylation of aa-tRNA was accelerated by glycerol and sucrose even in the presence of EF-Tu X GTP. In addition, the extent of tRNA aminoacylation was reduced when glycerol was present at concentrations above 2% (v/v). Thus, glycerol and sucrose are not necessarily inert or neutral additions to an in vitro incubation.  相似文献   
5.
A solid-phase immunoadsorbent specific for terminal deoxynucleotidyl transferase has been prepared. The enzyme from calf thymus and acute lymphoblastic leukemia cells binds to columns of this material. Bound enzyme can be eluted in an active form. Selective and rapid purification of terminal deoxynucleotidyl transferase from crude extracts of cells containing this enzyme can be achieved by this method since the immunoadsorbent has no affinity for other cellular DNA polymerases.  相似文献   
6.
A spermine-dependent, polyphenylalanine-synthesizing cell-free system having an optimum activity at 75-85 degrees C, has been developed from the extremely thermoacidophilic archaebacterium Caldariella acidophila. The C. acidophila system is totally insensitive to the EF-Tu targeted antibiotics pulvomycin (at 40 degrees C) and kirromycin (at 47-72 degrees C) contrary to control systems derived from both mesophilic (Escherichia coli) and thermoacidophilic (Bacillus acidocaldarius) eubacteria. The archaebacterial EF-Tu-equivalent factor is also immunologically unrelated to eubacterial EF-Tu and does not cross react with antibodies against Escherichia coli EF-Tu. The pulvomycin and kirromycin reactions thus provide new phyletic markers for archaebacterial ancestry.  相似文献   
7.
The su+7 nonsense suppressor of Escherichia coli is a mutant tRNATrp that can be aminoacylated with either tryptophan or glutamine. We have compared the ternary complexes of glutaminyl and tryptophanyl-su+7 tRNA with elongation factor Tu and GTP. Glutaminyl-su+7 tRNA binds more strongly than tryptophanyl-su+7 tRNA to EF Tu · GTP. The greatest distinction between the two species of the tRNA is seen in their dissociation rates from the complex, which differ by as much as fivefold. The distinction is affected by pH values around neutrality. These results show that EF Tu can distinguish between two aminoacyl-tRNAs which differ only in the aminoacyl group. The implications for the unusual amino acid specificity of su+7 tRNA are discussed.  相似文献   
8.
Antimicrobial resistance is considered as one of the major threats for the near future as the lack of effective treatments for various infections would cause more deaths than cancer by 2050. The development of new antibacterial drugs is considered as one of the cornerstones to tackle this problem. Aminoacyl-tRNA synthetases (aaRSs) are regarded as good targets to establish new therapies. Apart from being essential for cell viability, they are clinically validated. Indeed, mupirocin, an isoleucyl-tRNA synthetase (IleRS) inhibitor, is already commercially available as a topical treatment for MRSA infections. Unfortunately, resistance developed soon after its introduction on the market, hampering its clinical use. Therefore, there is an urgent need for new cellular targets or improved therapies. Follow-up research by Cubist Pharmaceuticals led to a series of selective and in vivo active aminoacyl-sulfamoyl aryltetrazole inhibitors targeting IleRS (e.g. CB 168).Here, we describe the synthesis of new IleRS and TyrRS inhibitors based on the Cubist Pharmaceuticals compounds, whereby the central ribose was substituted for a tetrahydropyran ring. Various linkers were evaluated connecting the six-membered ring with the base-mimicking part of the synthesized analogues. Out of eight novel molecules, a three-atom spacer to the phenyltriazole moiety, which was established using azide-alkyne click chemistry, appeared to be the optimized linker to inhibit IleRS. However, 11 (Ki,app = 88 ± 5.3 nM) and 36a (Ki,app = 114 ± 13.5 nM) did not reach the same level of inhibitory activity as for the known high-affinity natural adenylate-intermediate analogue isoleucyl-sulfamoyl adenosine (IleSA, CB 138; Ki,app = 1.9 ± 4.0 nM) and CB 168, which exhibit a comparable inhibitory activity as the native ligand. Therefore, 11 was docked into the active site of IleRS using a known crystal structure of T. thermophilus in complex with mupirocin. Here, we observed the loss of the crucial 3′- and 4′- hydroxyl group interactions with the target enzyme compared to CB 168 and mupirocin, which we suggest to be the reason for the limited decrease in enzyme affinity. Despite the lack of antibacterial activity, we believe that structurally optimizing these novel analogues via a structure-based approach could ultimately result in aaRS inhibitors which would help to tackle the antibiotic resistance problem.  相似文献   
9.
Investigations have been carried out concerning the effects of microwave (MW) exposure on the aminoacyl-transfer ribonucleic acid (tRNA) synthetase of the progeny of females that were exposed during their entire period of gestation (19 days). The changes caused by continuous-wave (CW) and amplitude-modulated (AM) MW radiation have been compared. CFLP mice were exposed to MW radiation for 100 min each day in an anechoic room. The MW frequency was 2.45 GHz, and the amplitude modulation had a 50 Hz rectangular waveform (on/off ratio, 50/50%). The average power density exposure was 3 mW/cm2, and the whole body specific absorption rate (SAR) was 4.23 ± 0.63 W/kg. The weight and mortality of the progeny were followed until postnatal day 24. Aminoacyl-tRNA synthetase enzymes and tRNA from the brains and livers of the offspring (461 exposed, 487 control) were isolated. The aminoacyl-tRNA synthetase activities were determined. The postnatal increase of body weight and organ weight was not influenced by the prenatal MW radiation. The activity of enzyme isolated from the brain showed a significant decrease after CW MW exposure, but the changes were not significant after 50 Hz AM MW exposure. The activity of the enzyme isolated from liver increased under CW and 50 Hz modulated MW. © 1996 Wiley-Liss, Inc.  相似文献   
10.
The co-crystal structure of Thermus aquaticus elongation factor Tu.guanosine 5'- [beta,gamma-imido]triphosphate (EF-Tu.GDPNP) bound to yeast Phe-tRNA(Phe) reveals that EF-Tu interacts with the tRNA body primarily through contacts with the phosphodiester backbone. Twenty amino acids in the tRNA binding cleft of Thermus Thermophilus EF-Tu were each mutated to structurally conservative alternatives and the affinities of the mutant proteins to yeast Phe-tRNA(Phe) determined. Eleven of the 20 mutations reduced the binding affinity from fourfold to >100-fold, while the remaining ten had no effect. The thermodynamically important residues were spread over the entire tRNA binding interface, but were concentrated in the region which contacts the tRNA T-stem. Most of the data could be reconciled by considering the crystal structures of both free EF-Tu.GTP and the ternary complex and allowing for small (1.0 A) movements in the amino acid side-chains. Thus, despite the non-physiological crystallization conditions and crystal lattice interactions, the crystal structures reflect the biochemically relevant interaction in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号