首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2010年   2篇
排序方式: 共有15条查询结果,搜索用时 140 毫秒
1.
The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50/mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.  相似文献   
2.
Selection markers are common genetic elements used in recombinant cell line development. While several selection systems exist for use in mammalian cell lines, no previous study has comprehensively evaluated their performance in the isolation of recombinant populations and cell lines. Here we examine four antibiotics, hygromycin B, neomycin, puromycin, and Zeocin™, and their corresponding selector genes, using a green fluorescent protein (GFP) as a reporter in two model cell lines, HT1080 and HEK293. We identify Zeocin™ as the best selection agent for cell line development in human cells. In comparison to the other selection systems, Zeocin™ is able to identify populations with higher fluorescence levels, which in turn leads to the isolation of better clonal populations and less false positives. Furthermore, Zeocin™-resistant populations exhibit better transgene stability in the absence of selection pressure compared to other selection agents. All isolated Zeocin™-resistant clones, regardless of cell type, exhibited GFP expression. By comparison, only 79% of hygromycin B-resistant, 47% of neomycin-resistant, and 14% of puromycin-resistant clones expressed GFP. Based on these results, we rank Zeocin™ > hygromycin B ∼ puromycin > neomycin for cell line development in human cells. Furthermore, this study demonstrates that selection marker choice does indeed impact cell line development.  相似文献   
3.
The burgeoning pipeline for new biologic drugs has increased the need for high‐throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250‐mL automated mini bioreactor (ambr250?) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24‐bioreactor ambr250? system with 10‐factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory‐scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late‐stage characterization. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1388–1395, 2015  相似文献   
4.
LoinMAX (LM) is a quantitative trait locus (QTL), which was found to be segregated in Australian Poll Dorset sheep, and maps to the distal end of sheep chromosome 18. LM-QTL was reported to increase Musculus longissimus dorsi area and weight by 11% and 8%, respectively. The aim of this study was to comprehensively evaluate the direct effects of LM-QTL in a genetic background typical of the stratified structure of the UK sheep industry, before it can be recommended for use in the United Kingdom. Crossbred lambs, either non-carriers or carrying a single copy of LM-QTL, were produced out of Scottish Mule ewes (Bluefaced Leicester × Scottish Blackface) artificially inseminated with semen from two Poll Dorset rams that were heterozygous for LM-QTL. Unexpectedly, one of these rams was also heterozygous for a QTL that affects the overall carcass muscling (MyoMAX™). This was accounted for by nesting MyoMAX™ status (carrier or non-carrier) within sire in the statistical analysis. Lambs were weighed and scanned by using X-ray computed tomography (CT) at an average age of 113 days. Ultrasound scan measurements, along with lamb weights, were taken at an average age of 140 days and lambs were then slaughtered. Carcasses were weighed and classified for fat cover and conformation scores, based on the Meat and Livestock Commission (MLC) carcass classification scheme, and then scanned by using a video image analysis (VIA) system. M. longissimus lumborum (MLL) width, as measured by CT scanning, was greater (P < 0.05) in lambs heterozygous for LM-QTL compared with non-carriers. MLL in LM-QTL carrier lambs was also significantly deeper, as measured by both ultrasound muscle depth at the third lumbar vertebrae (+3.7%; P < 0.05) and CT scanning at the fifth lumbar vertebrae (+3.4%; P < 0.01). Consequently, MLL area, was measured by using CT scanning, was significantly higher (+4.5%; P < 0.01) in lambs carrying a single copy of LM-QTL compared with non-carriers. Additional traits measured by CT, such as leg muscle dimensions, average muscle density and tissue proportions, were not significantly affected by LM-QTL. LM-QTL did not significantly affect total carcass lean or fat weights or MLC conformation and fat score classifications. Using previously derived algorithms, VIA could detect a significant effect of the LM-QTL on the predicted weight of saleable meat yield in the loin primal cut (+2.2%; P < 0.05), but not in the other primal cuts, or the total carcass.  相似文献   
5.
There is a growing body of evidence that the ambr™ workstation from TAP Biosystems performs well in terms of helping to select appropriate clones for scale-up studies. Here we have investigated the physical characteristics of this microscale bioreactor system and found that these are quite different from those that exist in larger scale stirred bioreactors. For example, the flow regime in the ambr™ vessel is transitional rather than turbulent and the sparged air/oxygen superficial gas velocity is relatively very low whilst the specific power input is much higher (~400 W/m3) when compared to that used at larger scales (typically ~20 W/m3). This specific power input is necessary in order to achieve kLa values sufficiently high to satisfy the oxygen demand of the cells and control of dO2. In line with other studies, we find that the culture of CHO cells in a 15 mL ambr™ bioreactor gave similar cell growth and productivity to that achieved in a 5 L stirred bioreactor whilst the results from shake flasks were significantly different. Given the differences in physical characteristics between the ambr™ and larger stirred bioreactors, we suggest that this similarity in biological performance is due to their similar control capabilities and the ‘equivalence of the stress parameters’ across the scales when compared with shake flasks.  相似文献   
6.
《MABS-AUSTIN》2013,5(5):977-986
ABSTRACT

HEK293 transient expression systems are used to quickly generate proteins for research and pre-clinical studies. With the aim of engineering a high-producing host that grows and transfects robustly in bioreactors, we deleted the pro-apoptotic genes Bax and Bak in an HEK293 cell line. The HEK293 Bax Bak double knock-out (HEK293 DKO) cell line exhibited resistance to apoptosis and shear stress. HEK293 DKO cells sourced from 2 L seed train bioreactors were most productive when a pH setpoint of 7.0, a narrow pH deadband of ±0.03, and a DO setpoint of 30% were used. HEK293 DKO seed train cells cultivated for up to 60 days in a 35 L bioreactor showed similar productivities to cells cultivated in shake flasks. To optimize HEK293 DKO transfection cultures, we first evaluated different pH and agitation parameters in ambr15 microbioreactors before scaling up to 10 L wavebag bioreactors. In ambr15 microbioreactors with a pH setpoint of 7.0, a wide pH deadband of ±0.3, and an agitation of 630 rpm, HEK293 DKO transient cultures yielded antibody titers up to 650 mg/L in 7 days. The optimal ambr15 conditions prompted us to operate the 10 L wavebag transfection without direct pH control to mimic the wide pH deadband ranges. The HEK293 DKO transfection process produces high titers at all scales tested. Combined, our optimized HEK293 DKO 35 L bioreactor seed train and 10 L high titer transient processes support efficient, large-scale recombinant protein production for research studies.  相似文献   
7.
PurposeTo commission and assess the performance of AlignRT InBore™, a Halcyon™ and Ethos™-dedicated Surface Guided Radiation Therapy (SGRT) platform which combines ceiling-mounted cameras for patient setup and bore-mounted cameras for in-bore tracking.MethodsTo check the potential impact of InBore™ cameras on dose delivery, 16 SRS, H&N, breast and pelvis patients’ quality assurance (QA) treatment plans were measured with/without AlignRT InBore™ and using ArcCHECK® and SRS MapCHECK®. Impact on image quality was determined using Catphan® 540 phantom and considering all available MV and CBCT protocols (head, breast, chest and pelvis). The stability, accuracy and overall performance of AlignRT InBore™ was assessed using an MV Cube and anthropomorphic phantoms.ResultsComparison of 2D dose distributions with/without AlignRT InBore™ showed no impact on treatment delivery for all 16 QA checks (p-value > 0.25). 2D and CBCT images showed no artefacts or change in the contrast-to-noise ratio, resolution and noise values measured with Catphan® 540. Anti-collision sensors were unaffected by the bore-mounted cameras. Additionally, AlignRT InBore™ cameras allowed for motion detection with sub-0.5 mm accuracy and sub-0.4 mm stability with surface coverage of >50 × 60 × 35 cc. Accurate transition (sub-0.3 mm) from virtual to treatment isocentres was achieved. Finally, Halcyon™ rotations during CBCT and beam delivery resulted in limited camera vibrations with translation uncertainty <0.5 mm in left-right and anterior-posterior directions and <0.1 mm in head-feet direction.ConclusionAlignRT InBore™ provides SGRT setup and intrafraction monitoring capabilities with a performance comparable to standard SGRT solutions while having no adverse effect on Halcyon™.  相似文献   
8.
Microbial community structure was analyzed from tropical monsoon influenced Mandovi-Zuari (Ma-Zu) estuarine sediment by means of Next Gen Sequencing (NGS) approach using Ion Torrent PGM™. The sequencing generated 80,282 raw sequence reads. Barcoding with Ion Tags allowed multiplex analysis of microbial community and helped in identifying shifts in microbial community structure. Analysis of sequence data revealed that sediment at both the stations in the Mandovi estuary was dominated by Archaeal group, Euryarchaeota (53.1% and 64.01%). Among Euryarchaeota, Methanomicrobia was dominant. Methanococci was present only at the mouth and Methanopyri was detected at the mid-estuarine station. Whereas, both the stations of Zuari estuary were dominated by Bacteria, Proteobacteria, mainly Gammaproteobacteria (97.67% and 54.41%). A clear influence of mangrove ecosystem on the bacterial diversity was evident in the Zuari estuary. These results suggest that the two estuaries have a very distinct microbial community structure. Characterization of microbial communities in this study area using NGS for the first time points out that even within geographically close habitats, the microbial population structure is significantly influenced by localized interactions. The signatures obtained from sediments can thus be used to reconstruct habitat characteristics and serve as biomarkers. Future studies should focus on the functional gene profiling of different microbial communities and the influence of seasons and tide in such monsoon influenced estuaries.  相似文献   
9.
10.
Over last decade, the use of Ni(II) complexes, derived from of glycine Schiff bases with chiral tridentate ligands, has emerge as a leading methodology for preparation of structurally diverse Tailor-Made Amino Acids, the key structural units in modern medicinal chemistry, and drug design. Here, we report asymmetric synthesis of derivatives of (S)-α-(octyl)glycine ((S)-2-aminodecanoic acid) and its N-Fmoc derivative via alkylation of chiral nucleophilic glycine equivalent with n-octyl bromide. Under the optimized conditions, the alkylation proceeds with excellent yield (98.1%) and diastereoselectivity (98.8% de). The observed stereochemical outcome and convenient reaction conditions bode well for application of this method for large-scale asymmetric synthesis of (S)-2-aminodecanoic acid and its derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号