首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4625篇
  免费   402篇
  国内免费   279篇
  2024年   11篇
  2023年   97篇
  2022年   106篇
  2021年   196篇
  2020年   173篇
  2019年   179篇
  2018年   191篇
  2017年   181篇
  2016年   148篇
  2015年   204篇
  2014年   221篇
  2013年   305篇
  2012年   215篇
  2011年   211篇
  2010年   157篇
  2009年   232篇
  2008年   238篇
  2007年   240篇
  2006年   231篇
  2005年   220篇
  2004年   190篇
  2003年   146篇
  2002年   150篇
  2001年   124篇
  2000年   129篇
  1999年   106篇
  1998年   81篇
  1997年   78篇
  1996年   71篇
  1995年   50篇
  1994年   61篇
  1993年   41篇
  1992年   51篇
  1991年   36篇
  1990年   36篇
  1989年   37篇
  1988年   31篇
  1987年   24篇
  1986年   13篇
  1985年   22篇
  1984年   15篇
  1983年   7篇
  1982年   13篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1978年   9篇
  1977年   2篇
  1976年   3篇
  1958年   1篇
排序方式: 共有5306条查询结果,搜索用时 15 毫秒
1.
目的 研究严重急性呼吸综合征冠状病毒2(SARS-CoV-2)膜蛋白对宿主细胞mRNA前体(pre-mRNA)3"非翻译区(UTR)加工的影响。方法 本研究以人肺上皮细胞系A549为模型,利用瞬时转染在细胞内过表达SARS-CoV-2膜蛋白;利用RNA-Seq测序技术及生物信息学分析方法,系统性描绘宿主细胞选择性多聚腺苷酸化(alternative polyadenylation,APA)事件;Metascape数据库对发生显著APA变化的基因进行功能富集分析;RT-qPCR验证靶基因3"UTR长度变化;蛋白质免疫印迹(Western blot)检测目的蛋白表达水平。结果 SARS-CoV-2膜蛋白外源表达后宿主细胞内共813个基因发生显著APA变化。GO和KEGG分析显示,差异APA基因广泛参与有丝分裂细胞周期、调节细胞应激等生物过程,涉及病毒感染和蛋白质加工等。从中进一步筛选出AKT1基因,在IGV软件中显示3"UTR延长;RT-qPCR验证AKT1基因的3"UTR长度变化趋势;Western blot结果显示AKT1蛋白磷酸化水平增加。结论 SARS-CoV-2膜蛋白潜在影响宿主pre-mRNA的3"UTR加工,其中参与多种病毒性生物过程的AKT1基因 3"UTR延长,且其编码的蛋白质功能在细胞内被激活。  相似文献   
2.
Birds often lose feathers during predation attempts, and thisability has evolved as a means of escape. Because predatorsare more likely to grab feathers on the rump and the back thanon the ventral side of an escaping bird, we predicted that theformer feathers would have evolved to be relatively looselyattached as an antipredator strategy in species that frequentlydie from predation. We estimated the force required to removefeathers from the rump, back, and breast by pulling featherswith a spring balance from a range of European bird speciesin an attempt to investigate ecological factors associated withease of feather loss during predation attempts. The force requiredto loosen a feather from the rump was less than that requiredto loosen a feather from back, which in turn was less than thatrequired to loosen a feather from the breast. The relative forceneeded to loosen rump feathers compared with feathers from theback and the breast was smaller for prey species preferred bythe most common predator of small passerine birds, the sparrowhawkAccipiter nisus. Likewise, the relative force was also smallerin species with a high frequency of complete tail loss amongfree-living birds, which we used as an index of the frequencyof failed predation attempts. The relative force required toremove feathers from the rump was smaller in species with ahigh frequency of fear screams, another measure of the relativeimportance of predation as a cause of death. Feather loss requiredparticularly little force among solitarily breeding bird speciesthat suffer the highest degree of predation. Antipredator defensein terms of force required to remove feathers from the rumpwas larger in species with a strong antiparasite defense interms of T-cell–mediated immune response. These findingsare consistent with the hypothesis that different defenses areantagonistic and that they are traded off against each other.  相似文献   
3.
A set of eight simple ecological and social principles is proposed that could enhance the understanding of what constitutes fish 'habitat' and, if implemented, could contribute to improved management and conservation strategies. The habitat principles are a small, interrelated sub‐set that may be coupled with additional ones to formulate comprehensive guidelines for management and conservation strategies. It is proposed that: 1) habitat can be created by keystone species and interactions among species; 2) the productivity of aquatic and riparian habitat is interlinked by reciprocal exchanges of material; 3) the riparian zone is fish habitat; 4) fishless headwater streams are inseparable from fish‐bearing rivers downstream; 5) habitats can be coupled – in rivers, lakes, estuaries and oceans, and in time; 6) habitats change over hours to centuries; 7) fish production is dynamic due to biocomplexity, in species and in habitats; 8) management and conservation strategies must evolve in response to present conditions, but especially to the anticipated future. It is contended that the long‐term resilience of native fish communities in catchments shared by humans depends on incorporating these principles into management and conservation strategies. Further, traditional strategies poorly reflect the dynamic nature of habitat, the true extent of habitat, or the intrinsic complexity in societal perspectives. Forward‐thinking fish management and conservation plans view habitat as more than water. They are multilayered, ranging from pools to catchments to ecoregions, and from hours to seasons to centuries. They embrace, as a fundamental premise, that habitat evolves through both natural and anthropogenic processes, and that patterns of change may be as important as other habitat attributes.  相似文献   
4.
《植物生态学报》2016,40(9):958
Large scale herbivorous insect outbreaks can cause death of regional forests, and the events are expected to be exacerbated with climate change. Mortality of forest and woodland plants would cause a series of serious consequences, such as decrease in vegetation production, shifts in ecosystem structure and function, and transformation of forest function from a net carbon sink into a net carbon source. There is thus a need to better understand the impact of insects on trees. Defoliation by insect pests mainly reduces photosynthesis (source decrease) and increases carbon consumption (sink increase), and hence causes reduction of nonstructural carbohydrate (NSC). When the reduction in NSC reaches to a certain level, trees would die of carbon starvation. External environment and internal compensatory mechanisms can also positively or negatively influence the process of tree death. At present, the research of carbon starvation is a hotspot because the increase of tree mortality globally with climate change, and carbon starvation is considered as one of the dominating physiological mechanisms for explaining tree death. In this study, we reviewed the definition of carbon starvation, and the relationships between the reduction of NSC induced by defoliation and the growth and death of trees, and the relationships among insect outbreaks, leaf loss and climate change. We also presented the potential directions of future studies on insect-caused defoliation and tree mortality.  相似文献   
5.
6.
Simple demographic and infectious disease models of buffaloes and other domestic hosts for animal trypanosomosis (surra) caused by Trypanosoma evansi were developed. The animal models contained deterministic and stochastic elements and were linked to simulate the benefit of control regimes for surra in village domestic animal populations in Mindanao, Philippines. The impact of the disease on host fertility and mortality were key factors in determining the economic losses and net-benefit from the control regimes. If using a high (99%) efficacy drug in surra-moderate to high risk areas, then treating all animals twice each year yielded low prevalence in 2 years; targeted treatment of clinically sick animals, constantly monitored (monthly), required 75% fewer treatments but took longer to reach a low prevalence than treating all animals twice each year. At high drug efficacy both of these treatment strategies increased the benefit over untreated animals by 81%. If drug efficacy declined then the benefit obtained from twice yearly treatment of all animals declined rapidly compared with regular monitoring and targeting treatment to clinically sick animals. The current control regimen applied in the Philippines of annual sero-testing for surra and only treating sero-positive animals provided the lowest net-benefit of all the control options simulated and would not be regarded as effective control. The total net-benefit from effective surra control for a typical village in a moderate/high risk area was 7.9 million pesos per annum (US $158,000). The value added to buffaloes, cattle, horses, goats/sheep and pigs as a result of this control was US $88, $84, $151, $7, $114 per animal/year, respectively.  相似文献   
7.
We analyzed the pattern of correlations among fitness components, herbivory, and resin characteristics in a natural all-aged stand of ponderosa pine, to infer the strength and mechanism of natural selection on plant chemistry. Male and female cone production were monitored yearly for 15 years, and levels of herbivory for 9 years in 165 trees. Resin flow rate and monoterpene composition were determined for these same trees. Multiple regression of fitness components on resin characteristics showed significant associations consistent with directional selection for increased resin flow rates and increased proportions of α- and β-pinene, myrcene and terpinolene. However, negative correlations among monoterpene fractions of the resin constrained the overall selection. Selective herbivory by aphids approached statistical significance and monoterpenes showed some (non-significant) effect as deterrents against deer browse. Resin characteristics were not correlated with attack by cone insects or porcupines. However, the association between resin characteristics and fitness is significantly different from that predicted by the path coefficients involving herbivores. Therefore the hypothesis that these herbivores mediate selection on the resin is not supported by the observed pattern of correlations among resin characteristics, herbivory, growth and fecundity. In this population, most of the association between resin characteristics and fitness appears to be mediated by some other factor independent of attack by herbivore species present. Received: 18 March 1996/Accepted: 18 July 1996  相似文献   
8.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   
9.
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.  相似文献   
10.
Tests for change-points with epidemic alternatives   总被引:1,自引:0,他引:1  
YAO  QIWEI 《Biometrika》1993,80(1):179-191
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号