首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   31篇
  269篇
  2024年   2篇
  2023年   12篇
  2022年   27篇
  2021年   20篇
  2020年   14篇
  2019年   15篇
  2018年   12篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   9篇
  2013年   20篇
  2012年   6篇
  2011年   11篇
  2010年   8篇
  2009年   7篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有269条查询结果,搜索用时 0 毫秒
1.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
2.
Arrestins are important scaffolding proteins that are expressed in all vertebrate animals. They regulate cell-signaling events upon binding to active G-protein coupled receptors (GPCR) and trigger endocytosis of active GPCRs. While many of the functional sites on arrestins have been characterized, the question of how these sites interact is unanswered. We used anisotropic network modeling (ANM) together with our covariance compliment techniques to survey all the available structures of the nonvisual arrestins to map how structural changes and protein-binding affect their structural dynamics. We found that activation and clathrin binding have a marked effect on arrestin dynamics, and that these dynamics changes are localized to a small number of distant functional sites. These sites include α-helix 1, the lariat loop, nuclear localization domain, and the C-domain β-sheets on the C-loop side. Our techniques suggest that clathrin binding and/or GPCR activation of arrestin perturb the dynamics of these sites independent of structural changes.  相似文献   
3.
Human protein disulfide isomerase (PDI) is an essential redox-regulated enzyme required for oxidative protein folding. It comprises four thioredoxin domains, two catalytically active (a, a’) and two inactive (b, b’), organized to form a flexible abb’a’ U-shape. Snapshots of unbound oxidized and reduced PDI have been obtained by X-ray crystallography. Yet, how PDI’s structure changes in response to the redox environment and inhibitor binding remains controversial. Here, we used multiparameter confocal single-molecule FRET to track the movements of the two catalytic domains with high temporal resolution. We found that at equilibrium, PDI visits three structurally distinct conformational ensembles, two “open” (O1 and O2) and one “closed” (C). We show that the redox environment dictates the time spent in each ensemble and the rate at which they exchange. While oxidized PDI samples O1, O2, and C more evenly and in a slower fashion, reduced PDI predominantly populates O1 and O2 and exchanges between them more rapidly, on the submillisecond timescale. These findings were not expected based on crystallographic data. Using mutational analyses, we further demonstrate that the R300-W396 cation-π interaction and active site cysteines dictate, in unexpected ways, how the catalytic domains relocate. Finally, we show that irreversible inhibitors targeting the active sites of reduced PDI did not abolish these protein dynamics but rather shifted the equilibrium toward the closed ensemble. This work introduces a new structural framework that challenges current views of PDI dynamics, helps rationalize its multifaceted role in biology, and should be considered when designing PDI-targeted therapeutics.  相似文献   
4.
Roy DB  Rose T  Di Cera E 《Proteins》2001,43(3):315-318
Na+ binding to thrombin enhances the catalytic activity toward numerous synthetic and natural substrates. The bound Na+ is located in a solvent channel 16 A away from the catalytic triad, and connects with D189 in the S1 site through an intervening water molecule. Molecular modeling indicates that the G184K substitution in thrombin positions the protonated epsilon-amino group of the Lys side-chain to replace the bound Na+. Likewise, the G184R substitution positions the guanidinium group of the longer Arg side-chain to replace both the bound Na+ and the connecting water molecule to D189. We explored whether the G184K or G184R substitution would replace the bound Na+ and yield a thrombin derivative stabilized in the highly active fast form. Both the G184K and G184R mutants lost sensitivity to monovalent cations, as expected, but their activity toward a chromogenic substrate was compromised up to 200-fold as a result of impaired diffusion into the S1 site and decreased deacylation rate. Interestingly, both G184K and G184R substitutions compromised cleavage of procoagulant substrates fibrinogen and PAR1 more than that of the anticoagulant substrate protein C. These findings demonstrate that Na+ binding to thrombin is difficult to mimic functionally with residue side-chains, in analogy with results from other systems.  相似文献   
5.
Guang Song 《Proteins》2017,85(9):1741-1758
In PDB, more than half of the entries are structure complexes and of these complexes, most are symmetric, composed of identical subunits. Complex formation is the way through which larger structures and even molecular machines are assembled and built in nature. In this work, we apply group theory and carry out a comprehensive study of the global motion patterns of protein complexes of various symmetries. The work presents for the first time a comprehensive list of all the symmetric, aesthetically pleasing, global motion patterns available to complexes of cyclic, dihedral, tetrahedral, or octahedral symmetry. Our results clearly demonstrate that complexes with the same symmetry will have the same global motion patterns and thus may function in a similar way, and that there are only a finite number of global motion patterns available to symmetric complexes as the number of protein symmetry groups is effectively finite. The work complements our current understanding of the principle of complex formation that has been mostly structure‐based by providing novel dynamics‐based insights. Furthermore, as dynamics is closely tied to function, these motion patterns can provide global insights into the general functional mechanisms of protein complexes.  相似文献   
6.
7.
The resistance of Gram-negative bacteria to β-lactam antibiotics stems mainly from β-lactamase proteins that hydrolytically deactivate the β-lactams. Of particular concern are the β-lactamases that can deactivate a class of β-lactams known as carbapenems. Carbapenems are among the few anti-infectives that can treat multi-drug resistant bacterial infections. Revealing the mechanisms of their deactivation by β-lactamases is a necessary step for preserving their therapeutic value. Here, we present NMR investigations of OXA-24/40, a carbapenem-hydrolyzing Class D β-lactamase (CHDL) expressed in the gram-negative pathogen, Acinetobacter baumannii. Using rapid data acquisition methods, we were able to study the “real-time” deactivation of the carbapenem known as doripenem by OXA-24/40. Our results indicate that OXA-24/40 has two deactivation mechanisms: canonical hydrolytic cleavage, and a distinct mechanism that produces a β-lactone product that has weak affinity for the OXA-24/40 active site. The mechanisms issue from distinct active site environments poised either for hydrolysis or β-lactone formation. Mutagenesis reveals that R261, a conserved active site arginine, stabilizes the active site environment enabling β-lactone formation. Our results have implications not only for OXA-24/40, but the larger family of CHDLs now challenging clinical settings on a global scale.  相似文献   
8.
Burak Erman 《Proteins》2013,81(7):1097-1101
Fluctuations of the distance between a pair of residues i and j may be correlated with the fluctuations of the distance between another pair k and l. In this case, information may be transmitted among these four residues. Allosteric activity is postulated to proceed through such correlated paths. In this short communication a fast method for calculating correlations among all possible pairs ij and kl leading to a pathway of correlated residues of a protein is proposed. The method is based on the alpha carbon centered Gaussian Network Model. The model is applied to Glutamine Amidotransferase and pathways of allosteric activity are identified and compared with literature. Proteins 2013; 81:1097–1101. © 2013 Wiley Periodicals, Inc.  相似文献   
9.
Hsp90 is an essential chaperone that requires large allosteric changes to determine its ATPase activity and client binding. The co‐chaperone Aha1, which is the major ATPase stimulator in eukaryotes, is important for regulation of Hsp90's allosteric timing. Little is known, however, about the structure of the Hsp90/Aha1 complex. Here, we characterize the solution structure of unmodified human Hsp90/Aha1 complex using NMR spectroscopy. We show that the 214‐kDa complex forms by a two‐step binding mechanism and adopts multiple conformations in the absence of nucleotide. Aha1 induces structural changes near Hsp90's nucleotide‐binding site, providing a basis for its ATPase‐enhancing activity. Our data reveal important aspects of this pivotal chaperone/co‐chaperone interaction and emphasize the relevance of characterizing dynamic chaperone structures in solution.  相似文献   
10.
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号