首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
  国内免费   1篇
  71篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   12篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
Nuclei isolated from Yoshida sarcoma cells had activity for conversion of dGTP to dGMP dependent on DNA synthesis. The ratio of nucleotide generation/generation + incorporation was 0.4 ± 0.1, indicating that approx. 40% of the incorporated dGMP was excised. Two lines of evidence indicated the dependence of this activity on DNA synthesis. (1) The activity was observed only in the presence of ATP, which is essential for nuclear DNA synthesis. (2) Inhibitors of DNA synthesis, such as N-ethylmaleimide, aphidicolin, spermine and KCl, also inhibited ATP- or DNA synthesis-dependent dGMP generation. Although nuclei contain nucleoside triphosphatase (N-nucleotidase), this enzyme was not involved appreciably in DNA synthesis-dependent dGMP generation. The reason for this was explained by the following findings. (a) Inhibitors did not decrease dGMP production in the complete absence of DNA synthesis. (b) Inhibitors did not inactivate N-nucleotidase to the same degree as they inhibited DNA synthesis-dependent dGMP generation. (c) Addition of ATP reduced dGTP hydrolysis catalyzed by N-nucleotidase. (d) GDP had no appreciable effect on DNA synthesis-dependent dGMP generation, but had a diluting effect on dGMP production catalyzed by N-nucleotidase. These results show that the pathway of dGMP generation in isolated nuclei was switched on addition of ATP from a N-nucleotidase-catalyzed one to a DNA polymerase-exonuclease-catalyzed one.  相似文献   
2.
The effect of pre- and posttreatment incubation of UV-irradiated and ethyl methanesulphonate (EMS) treated cells with non-toxic concentrations of inhibitors of de novo purine synthesis (dnPS) on expression of potentially lethal and premutational damage at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in V79 cells has been examined. The concentrations of inhibitors used were shown to profoundly perturb de novo DNA synthesis, by measurements of [14C]formate uptake, and cell cycle progression by flow cytofluorimetry. Postincubation in 6-methyl mercaptopurine ribonucleoside (MMPR) usually but not invariably potentiated the cytotoxic effects of UV and EMS but azaserine (AZS) and methotrexate (MTX) were without effect. No effects on mutant frequencies were observed on posttreatment with any of these agents. Caffeine produced the least effect on dnPS, but invariably potentiated lethal damage. This potentiation of lethal damage is not mediated by dnPS inhibition as has been suggested for Chinese hamster ovary (CHO) cells.  相似文献   
3.
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM.  相似文献   
4.
《Free radical research》2013,47(3):147-157
A simple method in mice was established to screen anti-ischemic compounds. Thirteen times binding of rubber ring (1 × 1 mm, d = 42 mm) for 4.5 hrs, swelled the paws of 60% mice applied and 14 times binding swelled only of 5% mice. Critically reversible limit lay between these conditions. “All or none” rule dominated the paw swelling perhap due to different endogenous anti-oxidants' levels of individual mice. Determination of paw reversibility at 90 min of recirculation, was proved to be suitable. Swollen paws at this time returned normal and the paws with no-reflow dropped out by muscle necrosis after several days. Intravenous (i.v.) bovine Cu, Zn-SOD and bacterial Mn-SOD (3 - 10 × 104 U/kg) or liposomal Cu, Zn-SOD (0.3 - 3 × 104 U/kg) were protective (35-50%) by 14 times binding. Allopurinol (10-100 mg/kg) and D-mannitol (3-30mg/kg) was effective (25-55%). Catalase (i.v., up to 105 U/kg) showed little protection, but local injection of 100 U/kg resulted in 50% protection. Glutathione (30 mg/kg) was suppressive only by local injection suggesting the importance of administration route. Desferal, heparin and nitric oxide synthesis inhibitor showed some protection, but indomethacin, mepyramine, ascorbate, vitamin E and dexamethasone were without effect. Excess dosing of all anti-oxidants tested, dramatically decreased their effects demanding caution for therapeutic trials.  相似文献   
5.
《Free radical research》2013,47(1-5):69-78
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   
6.
Inhibitors of xanthine oxidoreductase block conversion of xanthine to uric acid and are therefore potentially useful for treatment of hyperuricemia or gout. We determined the crystal structure of reduced bovine milk xanthine oxidoreductase complexed with oxipurinol at 2.0 Å resolution. Clear electron density was observed between the N2 nitrogen of oxipurinol and the molybdenum atom of the molybdopterin cofactor, indicating that oxipurinol coordinated directly to molybdenum. Oxipurinol forms hydrogen bonds with glutamate802, arginine880, and glutamate1261, which have previously been shown to be essential for the enzyme reaction. We discuss possible differences in the hypouricemic effect of inhibitors, including allopurinol and newly developed inhibitors, based on their mode of binding in the crystal structures.  相似文献   
7.
8.
Oxidative damage of the endothelium disrupts the integrity of the blood-brain barrier (BBB). We have shown before that alcohol exposure increases the levels of reactive oxygen species (ROS; superoxide and hydroxyl radical) and nitric oxide (NO) in brain endothelial cells by activating NADPH oxidase and inducible nitric oxide synthase. We hypothesize that impairment of antioxidant systems, such as a reduction in catalase and superoxide dismutase (SOD) activity, by ethanol exposure may elevate the levels of ROS/NO in endothelium, resulting in BBB damage. This study examines whether stabilization of antioxidant enzyme activity results in suppression of ROS levels by anti-inflammatory agents. To address this idea, we determined the effects of ethanol on the kinetic profile of SOD and catalase activity and ROS/NO generation in primary human brain endothelial cells (hBECs). We observed an enhanced production of ROS and NO levels due to the metabolism of ethanol in hBECs. Similar increases were found after exposure of hBECs to acetaldehyde, the major metabolite of ethanol. Ethanol simultaneously augmented ROS generation and the activity of antioxidative enzymes. SOD activity was increased for a much longer period of time than catalase activity. A decline in SOD activity and protein levels preceded elevation of oxidant levels. SOD stabilization by the antioxidant and mitochondria-protecting agent acetyl-L-carnitine (ALC) and the anti-inflammatory agent rosiglitazone suppressed ROS levels, with a marginal increase in NO levels. Mitochondrial membrane protein damage and decreased membrane potential after ethanol exposure indicated mitochondrial injury. These changes were prevented by ALC. Our findings suggest the counteracting mechanisms of oxidants and antioxidants during alcohol-induced oxidative stress at the BBB. The presence of enzymatic stabilizers favors the ROS-neutralizing antioxidant redox of the BBB, suggesting an underlying protective mechanism of NO for brain vascular tone and vasodilation.  相似文献   
9.
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases.Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis.  相似文献   
10.
The importance of methyl-thioIMP (Me-tIMP) formation for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity was studied in Molt F4 cells. Cytotoxicity of Me-MPR is caused by Me-tIMP formation with concomitant inhibition of purine de novo synthesis. Inhibition of purine de novo synthesis resulted in decreased purine nucleotide levels and enhanced 5-phosphoribosyl-1-pyrophosphate (PRPP) levels, with concurrent increased pyrimidine nucleotide levels. The Me-tIMP concentration increased proportionally with the concentration of Me-MPR. High Me-tIMP concentration also caused inhibition of PRPP synthesis. Maximal accumulation of PRPP thus occurred at low Me-MPR concentrations. As little as 0.2 μM Me-MPR resulted already after 2 h in maximal inhibition of formation of adenine and guanine nucleotides, caused by inhibition of purine de novo synthesis by Me-tIMP. Under these circumstances increased intracellular PRPP concentrations could be demonstrated, resulting in increased levels of pyrimidine nucleotides. So, in Molt F4 cells, formation of Me-tIMP form Me-MPR results in cytotoxicity by inhibition of purine de novo synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号