首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1286篇
  免费   152篇
  国内免费   6篇
  2024年   5篇
  2023年   25篇
  2022年   31篇
  2021年   47篇
  2020年   75篇
  2019年   88篇
  2018年   98篇
  2017年   72篇
  2016年   70篇
  2015年   57篇
  2014年   80篇
  2013年   191篇
  2012年   40篇
  2011年   67篇
  2010年   43篇
  2009年   53篇
  2008年   52篇
  2007年   46篇
  2006年   44篇
  2005年   40篇
  2004年   37篇
  2003年   27篇
  2002年   28篇
  2001年   15篇
  2000年   18篇
  1999年   18篇
  1998年   14篇
  1997年   11篇
  1996年   11篇
  1995年   6篇
  1994年   8篇
  1993年   12篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1444条查询结果,搜索用时 109 毫秒
1.
Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199 nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities.  相似文献   
2.
3.
The uncertainties in the refined parameters for a 1.5-A X-ray structure of carbon-monoxy (FeII) myoglobin are estimated by combining energy minimization with least-squares refinement against the X-ray data. The energy minimizations, done without reference to the X-ray data, provide perturbed structures which are used to restart conventional X-ray refinement. The resulting refined structures have the same, or better, R-factor and stereochemical parameters as the original X-ray structure, but deviate from it by 0.13 A rms for the backbone atoms and 0.31 A rms for the sidechain atoms. Atoms interacting with a disordered sidechain, Arg 45 CD3, are observed to have larger positional uncertainties. The uncertainty in the B-factors, within the isotropic harmonic motion approximation, is estimated to be 15%. The resulting X-ray structures are more consistent with the energy parameters used in simulations.  相似文献   
4.
Computer simulations are used to predict the behavior of pollen grains with different physical properties within the acceleration field created around the ovules of the gymnosperm Ephedra trifurca. A modelling procedure is given that (1) calculates the number of pollen grains captured by an ovule's pollination-droplet and (2) gives a correlation between pollination efficiency and the physical properties (= mass, size) of different types of pollen. Based on this procedure, the number of Ephedra pollen grains captured by micropyles can be less than the number captured from other species. However, the mass and size of Ephedra pollen grains appear to coincide with those predicted to yield a local maximum of pollination efficiency, i.e. slightly larger or smaller values of either mass or size would decrease the probability of capture. In addition, the properties of Ephedra pollen grains operate synergistically in the aerodynamic environment around ovules and are focused to collide with pollination-droplets. By analogy, the properties of Ephedra pollen coincide with those predicted for a localized adaptive peak. The physical properties of pollen grain types other than E. trifurca that can maximize pollen capture are not generally represented in the aerobiology of Ephedra during the pollination season. Therefore, the phenology of pollen release, community taxonomic-composition, and the physics of particle capture play collectively important roles in the reproductive success of Ephedra trifurca.  相似文献   
5.
Leaves of Kalanchoë daigremontiana Hamet et Perr. at a photon flux density (PFD) above 220 mol·m–2s–1 (400–700 nm) or at leaf temperatures above 27.0 °C showed a rapid loss of rhythmicity, and a more or less pronounced damping-out of the endogenous circadian rhythm of CO2 exchange under continuous illumination. This rhythm was reinitiated after reduction of the PFD by 90–120 mol·m–2·s–1 or reduction of leaf temperature by 3.5–11.0 °C under otherwise unchanged external conditions. The reduction in the magnitude of the external control parameter of the Crassulacean acid metabolism (CAM) rhythm (i.e. PFD or leaf temperature) set the phase of the new rhythm. The maxima of CO2 uptake occurred about 5, 28, 51, 75 h after the reduction. Simulations with a CAM model under comparable conditions showed a similar behaviour. The influence of temperature on the endogenous CAM rhythm observed in K. daigremontiana in vivo could be simulated by incorporating into the model temperature-dependent switch modes for passive efflux of malate from the vacuole to the cytoplasm. Thus, the model indicates that tonoplast function plays an important role in regulation of the endogenous CAM rhythm in K. daigremontiana.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PFD photon flux density This work was supported by a grant to F.B. and U.L. from Teilprojekt B5 in the Sonderforschungsbereich 199 of the Deutsche Forschungsgemeinschaft (Bonn, Germany) and by a grant to T. E. E. G. from the Sudienstiftung des deutschen Volkes (Bonn, Germany). Erika Ball is thanked for processing of time-course data for the analysis of Fourier spectra.  相似文献   
6.
Summary Analysis of deltorphin A position 4 analogues included: backbone constrained N MeHis, spinacine (Spi), N MePhe and the tetrahydroisoquinoline-3-carboxylic acid (Tic); spatially confined side-chain (Phg); and imidazole alkylation ofl- andd-His4 enantiomers. High selectivity was lost with the following replacements: N MeHis4, N MePhe4 and Phg4 reduced binding and the constrained residues also increasedµ binding; ring closure between the side-chain and amino group to yield Spi4 or Tic4 increasedµ affinity. Imidazole methylation of His4 marginally affected opioid binding and doubled selectivity; alkylatedd-His4-derivatives generally maintained selectivity in spite of decreased affinities. Thus, His4 imidazole preserves selectivity by facilitating high binding and by repulsion at theµ receptor. Several low energy conformers of deltorphin A indicated that the His4 imidazole preferred a spatial orientation parallel to the phenolic side-chain of Tyr1 suggestive that this conformation might contribute to high affinity and selectivity.  相似文献   
7.
The 3-dimensional optimization of the electrostatic interactions between the charged amino acid residues was studied by Monte Carlo simulations on an extended representative set of 141 protein structures with known atomic coordinates. The proteins were classified by different functional and structural criteria, and the optimization of the electrostatic interactions was analyzed. The optimization parameters were obtained by comparison of the contribution of charge-charge interactions to the free energy of the native protein structures and for a large number of randomly distributed charge constellations obtained by the Monte Carlo technique. On the basis of the results obtained, one can conclude that the charge-charge interactions are better optimized in the enzymes than in the proteins without enzymatic functions. Proteins that belong to the mixed αβ folding type are electrostatically better optimized than pure α-helical or β-strand structures. Proteins that are stabilized by disulfide bonds show a lower degree of electrostatic optimization. The electrostatic interactions in a native protein are effectively optimized by rejection of the conformers that lead to repulsive charge-charge interactions. Particularly, the rejection of the repulsive contacts seems to be a major goal in the protein folding process. The dependence of the optimization parameters on the choice of the potential function was tested. The majority of the potential functions gave practically identical results.  相似文献   
8.
Conformational dynamics is crucial for ribonucleic acid (RNA) function. Techniques such as nuclear magnetic resonance, cryo-electron microscopy, small- and wide-angle X-ray scattering, chemical probing, single-molecule Förster resonance energy transfer, or even thermal or mechanical denaturation experiments probe RNA dynamics at different time and space resolutions. Their combination with accurate atomistic molecular dynamics (MD) simulations paves the way for quantitative and detailed studies of RNA dynamics. First, experiments provide a quantitative validation tool for MD simulations. Second, available data can be used to refine simulated structural ensembles to match experiments. Finally, comparison with experiments allows for improving MD force fields that are transferable to new systems for which data is not available. Here we review the recent literature and provide our perspective on this field.  相似文献   
9.
The autoxidation of tetralin is treated as a model reaction system to define the applicability of stereospecific autocatalysis. This concept, predicting a spontaneous amplification of enantiomeric excess generated by an autocatalytic chemical reaction, is used in several theoretical models as an explanation for the origin of natural optical activity. The reaction system investigated obeys the basic criteria of these models: a chiral intermediate (tetralin hydroperoxide) is produced from an achiral substrate (tetralin) via an autocatalytic pathway where the feedback mechanism is expected to generate a state of broken chiral symmetry. In order to test the amplification capacity of this reaction a computer analysis of the kinetic scheme is performed. This simulation is derived from the known kinetic scheme of autoxidation and is validated by fitting the experimentally observed data of hydroperoxide evolution. Calculations show that this model allows powerful amplification of enantiomeric excess and a transient amplification of the optical rotation. It is also demonstrated that the model system exhibits pronounced sensitivity toward any loss of absolute configuration of the involved chiral species. Since an amplification effect results exclusively at a high degree of stereoselectivity, it is concluded that stereospecific autocatalysis is possible in systems which show template reactions, crystallization, or colloidal effects. © 1993 Wiley-Liss, Inc.  相似文献   
10.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号