首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  16篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
为了明确大鼠背根节(DRG)神经元中存在慢的Ca2 激活K 电流成分,本实验在新鲜分散的DRG神经元胞体上,采用全细胞电压箝技术,给予DRG神经元一定强度的去极化刺激,记录刺激结束后30ms时的尾电流幅度。结果发现:(1)随着去极化时间从1ms延长至180ms时,尾电流幅度由9.3±2.8pA逐渐增大至64.1±3.4pA(P<0.001);(2)当去极化结束后的复极化电位降低时,尾电流幅度先逐渐下降到零,然后改变方向,逆转电位约为-63mV;(3)细胞外施加500μmol/LCd2 或细胞内液中施加11mmol/LEGTA时尾电流明显减小甚至完全消失;(4)尾电流中慢成分的幅度在细胞外给与200nmol/L蜂毒明肽后,减小了约26.32±3。9%(P<0。01);(5)细胞外施加10mmol/LTEA,可明显降低尾电流中的快成分。结果提示,在DRG神经元启超极化中存在Ca2 激活K 电流的蜂毒明肽敏感成分──IAHP。  相似文献   
2.
The hippocampal formation (HF) plays an important role to facilitate higher order cognitive functions. Cholinergic activation of heteromeric nicotinic acetylcholine receptors (nAChRs) within the HF is critical for the normal development of principal neurons within this brain region. However, previous research investigating the expression and function of heteromeric nAChRs in principal neurons of the HF is limited to males or does not differentiate between the sexes. We used whole‐cell electrophysiology to show that principal neurons in the CA1 region of the female mouse HF are excited by heteromeric nAChRs throughout postnatal development, with the greatest response occurring during the first two weeks of postnatal life. Excitability responses to heteromeric nAChR stimulation were also found in principal neurons in the CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI (ECVI) of young postnatal female HF. A direct comparison between male and female mice found that principal neurons in ECVI display greater heteromeric nicotinic passive and active excitability responses in females. This sex difference is likely influenced by the generally more excitable nature of ECVI neurons from female mice, which display a higher resting membrane potential, greater input resistance, and smaller afterhyperpolarization potential of medium duration (mAHP). These findings demonstrate that heteromeric nicotinic excitation of ECVI neurons differs between male and female mice during a period of major circuitry development within the HF, which may have mechanistic implications for known sex differences in the development and function of this cognitive brain region.  相似文献   
3.
Yang YM  Chung JM  Rhim H 《Life sciences》2006,79(18):1702-1711
The peptide cholecystokinin (CCK) is one of the major neurotransmitters modulating satiety, nociception, and anxiety behavior. Although many behavioral studies showing anti-analgesic and anxiogenic actions of CCK have been reported, less is known about its cellular action in the central nervous system (CNS). Therefore, we examined the action of CCK in rat dorsolateral periaqueductal gray (PAG) neurons using slice preparations and whole-cell patch-clamp recordings. Application of CCK-8S produced an inward current accompanied by increased spontaneous synaptic activities. The CCK-8S-induced inward current (I(CCK)) was recovered after washout and reproduced by multiple exposures. Current-voltage plots revealed that I(CCK) reversed near the equilibrium potential for K(+) ions with a decreased membrane conductance. When several K(+) channel blockers were used, application of CdCl(2), TEA, or apamin significantly reduced I(CCK). I(CCK) was also significantly reduced by the CCK(2) receptor antagonist, L-365,260, while it was not affected by the CCK(1) receptor antagonist, L-364,718. Furthermore, we examined the effects of CCK-8S on miniature excitatory postsynaptic currents (mEPSCs) in order to determine the mechanism of CCK-mediated increase on synaptic activities. We found that CCK-8S increased the frequency of mEPSCs, but had no effect on mEPSC amplitude. This presynaptic effect persisted in the presence of CdCl(2) or Ca(2+)-free bath solution, but was completely abolished by pre-treatment with BAPTA-AM, thapsigargin or L-365,260. Taken together, our results indicate that CCK can excite PAG neurons at both pre- and postsynaptic loci via the activation of CCK(2) receptors. These effects may be important for the effects of CCK on behavior and autonomic function that are mediated via PAG neurons.  相似文献   
4.
5.
6.
The calcium dysregulation hypothesis of brain aging posits that an age-related increase in neuronal calcium concentration is responsible for alterations in a variety of cellular processes that ultimately result in learning and memory deficits in aged individuals. We previously generated a novel transgenic mouse line, in which expression of the L-type voltage-gated calcium, CaV1.3, is increased by ~50% over wild-type littermates. Here, we show that, in young mice, this increase is sufficient to drive changes in neuronal physiology and cognitive function similar to those observed in aged animals. Specifically, there is an increase in the magnitude of the postburst afterhyperpolarization, a deficit in spatial learning and memory (assessed by the Morris water maze), a deficit in recognition memory (assessed in novel object recognition), and an overgeneralization of fear to novel contexts (assessed by contextual fear conditioning). While overexpression of CaV1.3 recapitulated these key aspects of brain aging, it did not produce alterations in action potential firing rates, basal synaptic communication, or spine number/density. Taken together, these results suggest that increased expression of CaV1.3 in the aged brain is a crucial factor that acts in concert with age-related changes in other processes to produce the full complement of structural, functional, and behavioral outcomes that are characteristic of aged animals.  相似文献   
7.
8.
The activity of brain serotonergic neurons in both the pontine-mesencephalic and medullary groups is positively correlated with the level of behavioral arousal and/or the behavioral state. This, in turn, appears to be related to the level of tonic motor activity, especially as manifested in antigravity muscles and other muscle groups associated with gross motor activity. In addition, a subset of serotonergic neurons displaysa further increase in activity in association with repetitive, central pattern generator mediated responses. Accumulating evidence indicates that this relation to motor activity is related both to the co-activation of the sympathetic nervous system and to the modulation of afferent inputs.  相似文献   
9.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号