首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2020年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2007年   1篇
  2005年   3篇
  2000年   1篇
  1996年   1篇
排序方式: 共有16条查询结果,搜索用时 828 毫秒
1.
The article briefly reports the fundamental scientific principles and landmarks in the field of luminescence and further enlightens the importance of persistent phosphor that is now widely used in luminous paints. Its main focus is on phosphorescence that makes use of lanthanides that have gained paramount importance in various cross-sections of luminescent applications. Both inorganic and organic afterglow materials, synthesis and characterization along with skilled researchers' essential updates on emerging trends and efforts are elucidated at length. It exclusively reviews the red/green/blue organic/inorganic/hybrid phosphorescent materials and the latest advances in the development of novel long afterglow materials that can accelerate the green technology in the world of luminescence.  相似文献   
2.
Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 °C and the Q band was upshifted by 5 °C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700+ was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.  相似文献   
3.
The afterglow properties of long afterglow luminescent materials are greatly affected by their defects, which are distributed on the grain surface. Increasing the exposed surface area is an important method to improve the afterglow performance. In this research, long rod-shaped long afterglow materials Sr2MgSi2O7:Eu2+,Dy3+ were prepared using the hydrothermal-coprecipitation method. When the reaction time reached 96 h, the length of the afterglow materials could grow to 2 mm, and the sintering temperature was just 1150°C. The emission spectra of all obtained samples upon excitation at 397 nm had a maximum of 465 nm, which belonged to the representative transition of Eu2+. The initial brightness was 1.35 cd/m2. The afterglow time could reach 19 h, giving a good afterglow performance. The research on this kind of material has essential significance in the exploration of luminescence mechanisms and their applications.  相似文献   
4.
Graphene quantum dots (GQDs) was synthesized using a simple, rapid and affordable method and decorated with selenium at different molar ratios for the first time to obtain an efficient sample for use in photodynamic therapy. Surface modification of GQDs was carried out using polyethylene glycol (PEG) for conjugation with protoporphyrin IX (PpIX). Synthesized GQDs (Se: 0.3%) at 180°C had an emission spectrum that fairly coincided with the absorption profile of PpIX. A relative decrease of about 62.48% in the emission intensity of anthracene was recorded under illumination with UVC light in the presence of GQDs (Se: 0.3%) and the reduction for clung GQDs (Se: 0.3%) and PpIX during 90 min was about 70.68%. Singlet oxygen (1O2) generation was examined using a chemical method that showed significant enhancement in decomposition rate constant in clung GQDs–PEG–PpIX compared with GQDs and PpIX alone. Afterglow over 600 s showed that GQDs (Se: 0.3%) could be effective for near skin and even deep tumours.  相似文献   
5.
The recombination reactions of Photosystem II have been investigated in vivo in rice leaves by using the thermoluminescence (TL) emission technique. Excitation of dark-adapted leaf segments at 0 °C with different number of single turn-over flashes induced the appearance of complex TL glow curves. The mathematical analysis of these curves showed the existence of four TL components: B1-band (temperature maximum, tmax, at 24 °C, originating from S3QB recombination), B2-band (tmax at 35 °C, from S2QB), AG-band (tmax at 46 °C) and C-band (tmax at 55 °C, from TyrD+QA). Their contributions to the total TL signal were different depending on the number of flashes given. AG-band seems to reflect a special electron transfer from some unknown stroma donor to PS II. Q-band (tmax at 19 °C), originating from S2QA recombination, was recorded after flashing samples incubated in the presence of DCMU. The recombination halftimes (t1/2) at 20 °C of S2QA, S3QB, S2QB and TyrD+QA were, respectively, 0.8 s, 48 s, 74 s and about 1 h. A sharp AG-band (tmax at 50 °C and t1/2 of 210 s) could be also observed after illumination of leaves with far-red light and after a dark incubation period of whole plants. Incubation of leaf segments with 0.5 M NaCl abolished the inductions of AG-band by darkness and far-red illumination, significantly decreased Q-band intensity, whereas induced a strong increase in C-band intensity. The possible inhibition of S2/S3 formation and quinone oxidation by saline stress are discussed.  相似文献   
6.
Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), and photo‐, thermo‐ and mechanoluminescence spectroscopic techniques. The phase structure of the sintered phosphor was an akermanite type structure, which belongs to tetragonal crystallography. The thermoluminescence properties of these phosphors were investigated and compared. Under ultraviolet light excitation, the emission spectra of both prepared phosphors were composed of a broad emission band peaking at 470 nm. When the Sr2MgSi2O7:Eu2+ phosphor was co‐doped with Dy3+, the photoluminescence (PL), afterglow and mechanoluminescence (ML) intensity were strongly enhanced. The decay graph indicated that both the sintered phosphors contained fast decay and slow decay processes. The ML intensities of Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ phosphors were increased proportionally with increasing impact velocity, a finding that suggests that these phosphors could be used as sensors to detect the stress of an object. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
Energy storage phosphors with millisecond period afterglow that compensate for the diming time of alternating current light‐emitting diodes (AC‐LEDs) have promising application. To obtain a persistent luminescence (PersL) white colour in AC‐LEDs, we focussed on a red afterglow with short period phosphorescence. Ca4Ti3O10 forms a type of perovskite‐related Ruddlesden–Popper phase structure. Doping Pr3+ ions into Ca4Ti3O10, an ideal red PersL was obtained. X‐ray diffraction and element analysis demonstrated that our target samples were crystallized well. Steady‐state and afterglow luminescence properties were investigated in detail. Notably, the PersL intensity was dependent on various excitation wavelengths. By measuring three‐dimensional thermoluminescence spectra, we found that the trap depths showed a continuous distribution and that the shallowest trap contributed to the millisecond afterglow. Two PersL mechanism models were used to elucidate the electron charging and de‐trapping processes under UV or blue light activation.  相似文献   
8.
I present here my tribute to William Arnold, a giant and a pioneer of biophysics of photosynthesis. We honor the man, the science and the philosophy of science he has provided us since 1932.  相似文献   
9.
Michel Havaux  Dominique Rumeau 《BBA》2005,1709(3):203-213
Far-red illumination of plant leaves for a few seconds induces a delayed luminescence rise, or afterglow, that can be measured with the thermoluminescence technique as a sharp band peaking at around 40-45 °C. The afterglow band is attributable to a heat-induced electron flow from the stroma to the plastoquinone pool and the PSII centers. Using various Arabidopsis and tobacco mutants, we show here that the electron fluxes reflected by the afterglow luminescence follow the pathways of cyclic electron transport around PSI. In tobacco, the afterglow signal relied mainly on the ferredoxin-quinone oxidoreductase (FQR) activity while the predominant pathway responsible for the afterglow in Arabidopsis involved the NAD(P)H dehydrogenase (NDH) complex. The peak temperature Tm of the afterglow band varied markedly with the light conditions prevailing before the TL measurements, from around 30 °C to 45 °C in Arabidopsis. These photoinduced changes in Tm followed the same kinetics and responded to the same light stimuli as the state 1-state 2 transitions. PSII-exciting light (leading to state 2) induced a downward shift while preillumination with far-red light (inducing state 1) caused an upward shift. However, the light-induced downshift was strongly inhibited in NDH-deficient Arabidopsis mutants and the upward shift was cancelled in plants durably acclimated to high light, which can perform normal state transitions. Taken together, our results suggest that the peak temperature of the afterglow band is indicative of regulatory processes affecting electron donation to the PQ pool which could involve phosphorylation of NDH. The afterglow thermoluminescence band provides a new and simple tool to investigate the cyclic electron transfer pathways and to study their regulation in vivo.  相似文献   
10.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号