首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  2018年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有21条查询结果,搜索用时 345 毫秒
1.
AdeH and adeI are two auxotrophic mutants of Chinese hamster ovary (CHO-K1) cells which specifically require adenine as the purine source to grow. The enzymatic defects of these mutants were examined in cell-free extracts. It was found that adeH did not have any detectable adenylosuccinate synthetase activity and adeI was defective in the adenylosuccinate lyase enzyme. The relevance of adenine-requiring mutants to the study of the regulation of purine metabolism in mammalian cells is discussed.This work was supported by research grants from the National Institute of Aging (AG00029) and the National Foundation, March of Dimes (1-423), and by a contract from the Center for Toxicological Research, Food and Drug Administration (72-213). David Patterson is a recipient of a Research Career Development Award from the National Institute of Arthritis, Metabolic and Digestive Diseases (AM00044).Contribution (No. 218) from the Eleanor Roosevelt Institute for Cancer Research.  相似文献   
2.
The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.  相似文献   
3.
4.
Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coli AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in Km values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the kcat value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the biochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coli AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis.  相似文献   
5.
Adenylosuccinate synthetase (AdSS) is an enzyme at regulatory point of purine metabolism. In pathogenic organisms which utilise only the purine salvage pathway, AdSS asserts itself as a promising drug target. One of these organisms is Helicobacter pylori, a wide-spread human pathogen involved in the development of many diseases. The rate of H. pylori antibiotic resistance is on the increase, making the quest for new drugs against this pathogen more important than ever. In this context, we describe here the properties of H. pylori AdSS. This enzyme exists in a dimeric active form independently of the presence of its ligands. Its narrow stability range and pH-neutral optimal working conditions reflect the bacterium’s high level of adaptation to its living environment. Efficient inhibition of H. pylori AdSS with hadacidin and adenylosuccinate gives hope of finding novel drugs that aim at eradicating this dangerous pathogen.  相似文献   
6.
Adenylosuccinate lyase is a homotetramer that catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide (SAICAR). Several point mutations in the gene encoding the enzyme have been implicated in human disease. Bacillus subtilis adenylosuccinate lyase was used as a model system in which mutations were constructed corresponding to those mutations associated with severe human adenylosuccinate lyase deficiency. Site-directed mutagenesis was utilized to construct amino acid substitutions in B. subtilis adenylosuccinate lyase; Met(10), Ile(123), and Thr(367) were replaced by Leu, Trp, and Arg, respectively, and the altered enzymes were expressed in Escherichia coli. These purified enzymes containing amino acid substitutions were found to have substantial catalytic activity and exhibit relatively small changes in their kinetic parameters. The major deviations from the wild-type-like behavior were observed upon biophysical characterization. All of these enzymes with amino acid replacements are associated with marked thermal instability. I123W adenylosuccinate lyase exhibits notable changes in the circular dichroism spectra, and a native gel electrophoresis pattern indicative of some protein aggregation. T367R also exhibits alterations at the quarternary level, as reflected in native gel electrophoresis. Experimental results, combined with homology modeling, suggest that the altered enzymes are primarily structurally impaired. The enzyme instability was found to be lessened by subunit complementation with the wild-type enzyme, under mild conditions; these studies may have implications for the in vivo behavior of adenylosuccinate lyase in heterozygous patients. Residues Met(10), Ile(123), and Thr(367) appear to be located in regions of the enzyme important for maintaining the structural integrity required for a stable, functional enzyme.  相似文献   
7.
Thr(93), Ser(94), Thr(140), and Ser(306) are conserved in all adenylosuccinate lyases (ASL) and are close to other amino acids previously identified by mutagenesis as being in the active site. To test their involvement in the enzyme's function, each of these amino acids was replaced by alanine. All the mutants exhibit circular dichroism spectra which are similar to that of wild-type enzyme, indicating there is no appreciable change in secondary structure. T93A exhibits 0.5% of the V(max) of wild-type ASL with a 10-fold increase in K(m) for adenylosuccinate. S94A has 65% of the V(max) of wild-type ASL with little change in K(m). T140A exhibits 0.03% of the activity of wild-type enzyme with an 11-fold increase in K(m). S306A has 0.4% of the V(max) of wild-type ASL with a sevenfold increase in K(m). Measurements of the pH-V(max) profile reveal a pK(2) value for S94A of 7.83 and S306A of 7.65, in contrast to 8.24 for the wild-type enzyme and 8.42 for T93A. Thr(93) may orient adenylosuccinate optimally for catalysis, while Ser(94) stabilizes protonated His(89), a determinant of pK(2). Thr(140) may, through hydrogen bonding, interact with Asn(270), an amino acid essential for catalysis. Ser(306) may be involved in a hydrogen bond network that ultimately stabilizes protonated His(68), which is probably the general acid in the reaction of enzyme with substrate. The results of this paper demonstrate the importance in the catalytic function of ASL of hydrogen bonds and hydrogen bonding networks involving serine and threonine.  相似文献   
8.
9.
Adenylosuccinate lyase (ASL) catalyzes two beta-elimination reactions in purine biosynthesis, leading to the question of whether the two substrates occupy the same or different active sites. Kinetic studies of Bacillus subtilis and human ASL with a new substrate analog, adenosine phosphonobutyric acid, 2'(3'), 5'-diphosphate (APBADP), show that it acts as a competitive inhibitor with respect to either substrate (K(I) approximately 0.1 microM), indicating that the two substrates occupy the same active site. Binding studies show that both the B. subtilis and human ASLs bind up to 4 mol of APBADP per mole of enzyme tetramer and that both enzymes exhibit cooperativity: negative for B. subtilis ASL and positive for human ASL. Mutant B. subtilis ASLs, with replacements for residues previously identified as critical for catalysis, bind the substrate analog similarly to wild-type ASL. Two serines in a flexible loop of ASL have been proposed to play roles in catalysis because they are close to the substrate in the crystal structure of Escherichia coli ASL. We have now mutated the corresponding serines to alanines in B. subtilis and human ASL to evaluate their involvement in enzyme function. Kinetic data reveal that human Ser(289) and B. subtilis Ser(262) and Ser(263) are essential for catalysis, while the ability of these Ser mutants to bind APBADP suggests that they do not contribute to substrate affinity. Although these serines are not visible in the crystal structure of human adenylosuccinate lyase complexed with substrate or products (PDB #2VD6), they may be interacting with the active sites.  相似文献   
10.
Formycin B, a pyrazolo(4,3-d)pyrimidine C-nucleoside, inhibited the growth of Leishmaniadonovani promastigotes in culture with an ED90 of 0.2 μg/ml. Promastigotes incubated for 24 hrs with Formycin B at 10 μg/ml were found to convert it to the ribonucleotide, formycin B 5′-monophosphate. The parasites were also capable of aminating formycin B 5′-monophosphate as evidenced by the appearance of formycin A di- and triphosphate. The RNA contained the formycin A moiety in 3′,5′-polynucleotide linkage. Succino-AMP synthetase from these parasites was able to use formycin B 5′-monophosphate as an alternate-substrate with a K'm of 26 μM and a V'm of about 1% the V'm IMP. Formycin B 5′-monophosphate was also a substrate for mammalian succino-AMP synthetase with a Vm' of 40% the Vm' of IMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号