首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1371篇
  免费   28篇
  国内免费   32篇
  1431篇
  2023年   5篇
  2022年   10篇
  2021年   16篇
  2020年   13篇
  2019年   17篇
  2018年   15篇
  2017年   11篇
  2016年   10篇
  2015年   21篇
  2014年   37篇
  2013年   42篇
  2012年   34篇
  2011年   56篇
  2010年   28篇
  2009年   43篇
  2008年   55篇
  2007年   42篇
  2006年   52篇
  2005年   45篇
  2004年   50篇
  2003年   42篇
  2002年   53篇
  2001年   30篇
  2000年   25篇
  1999年   20篇
  1998年   38篇
  1997年   38篇
  1996年   44篇
  1995年   45篇
  1994年   39篇
  1993年   22篇
  1992年   36篇
  1991年   24篇
  1990年   36篇
  1989年   24篇
  1988年   25篇
  1987年   13篇
  1986年   20篇
  1985年   33篇
  1984年   42篇
  1983年   34篇
  1982年   32篇
  1981年   30篇
  1980年   35篇
  1979年   31篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
排序方式: 共有1431条查询结果,搜索用时 15 毫秒
1.
A cytosolic, macromolecular factor required for the cholera toxin-dependent activation of pigeon erythrocyte adenylate cyclase and cholera toxin-dependent ADP-ribosylation of a membrane-bound 43 000 dalton polypeptide has been purified 1100-fold from horse erythrocyte cytosol using organic solvent precipitation and heat treatment. This factor, 13 000 daltons, does not absorb to anionic or cationic exchange resins, is sensitive to trypsin or 10% trichloroacetic acid and is not extractable by diethyl ether. Activation of adenylate cyclase by cholera toxin requires the simultaneous presence of ATP (including possible trace GTP), NAD+, dithiothreitol, cholera toxin, membranes and the cytosolic macromolecular factor. Reversal of cholera toxin activation of adenylate cyclase, and of the toxin-dependent ADP-ribosylation, requires the presence of the cytosolic factor. The ability of the purified cytosolic factor to influence the hormonal sensitivity of liver membrane adenylate cyclase may provide clues to its physiological functions.  相似文献   
2.
Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.Abbreviations OTAC octadecyltrimethylammoniumchloride - SLS sodium lauryl sarcosinate  相似文献   
3.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   
4.
Summary The adult rat lung cytoplasm contains some factors which markedly stimulate adenylate cyclase activity in plasma membranes (Nijjar, M. S. Biochim. Biophys. Acta 584:43–50, 1979). Adenylate cyclase activator (ACA) was purified from rat lungs by DEAE-cellulose chromatography, preparative isoelectric focusing and by repeated high-performance liquid chromatography on a Sepharogel TSK 2000SW column. The final preparation showed about 200 fold purification in ACA activity over the original lung supernatant, and appeared to be homogeneous on the basis of its migration into a single band on SDS-polyacrylamide gel electrophoresis, and co-elution of ACA activity with protein from a gel exclusion column. ACA is an acidic (pl 4.8 ± 0.1), heat labile, monomeric protein of 40000 ± 2000 dalton molecular weight, and does not resemble calmodulin.  相似文献   
5.
Chemosensory dendritic membranes (olfactory cilia) contain protein kinase activity that is stimulated by cyclic AMP and more efficiently by the nonhydrolyzable GTP analog guanosine-5'-O-(3-thio)triphosphate (GTP gamma S). In control nonsensory (respiratory) cilia, the cyclic AMP-dependent protein kinase is practically GTP gamma S-insensitive. GTP gamma S activation of the olfactory enzyme appears to be mediated by a stimulatory GTP-binding protein (G-protein) and adenylate cyclase previously shown to be enriched in the sensory membranes. Protein kinase C activity cannot be detected in the chemosensory cilia preparation under the conditions tested. Incubation of olfactory cilia with [gamma-32P]ATP leads to the incorporation of [32P]phosphate into many polypeptides, four of which undergo covalent modification in a cyclic nucleotide-dependent manner. The phosphorylation of one polypeptide, pp24, is strongly and specifically enhanced by cyclic AMP at concentrations lower than 1 microM. This phosphoprotein is not present in respiratory cilia, but is seen also in membranes prepared from olfactory neuroepithelium after cilia removal. Cyclic AMP-dependent protein kinase and phosphoprotein pp24 may be candidate components of the molecular machinery that transduces odor signals.  相似文献   
6.
Basal and vasoactive intestinal peptide (VIP)-stimulated accumulations of cyclic AMP were measured in slices of rat cerebral cortex. Neither gamma-aminobutyric acid (GABA) nor the selective GABAB receptor agonist (-)-baclofen stimulated basal cyclic AMP accumulation, whereas VIP caused a large dose-dependent increase in cyclic AMP levels. However, in the presence of 100 microM (-)-baclofen, the effects of VIP on cyclic AMP accumulation were significantly enhanced, with the responses to 1 microM and 10 microM VIP being approximately doubled. The enhancing effects of (-)-baclofen was dose related (1-1,000 microM), but an enhancing effect was not observed with 100 microM (+)-baclofen. In the presence of the GABA uptake inhibitor nipecotic acid (1 mM), GABA caused a similar dose-related enhancement of the VIP response. The ability of either GABA or (-)-baclofen to augment VIP-stimulated production of cyclic AMP was not mimicked by the GABAA, agonists isoguvacine and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and was not antagonized by the GABAA antagonist bicuculline. The putative GABAB antagonist 5-aminovaleric acid (1 mM) significantly reduced the effect of (-)-baclofen. The ability of (-)-baclofen to enhance VIP-stimulated accumulation of cyclic AMP was observed in slices of rat cerebral cortex, hippocampus, and hypothalamus. These results indicate that GABA and (-)-baclofen can enhance VIP-stimulated accumulation of cyclic AMP in rat brain slices via an interaction with specific GABAB receptors.  相似文献   
7.
The vasoactive intestinal polypeptide (VIP) receptor was characterized on the GH3 rat pituitary tumor cell line using competitive binding studies with peptides having sequence homology with VIP. Further studies investigated receptor coupling to the adenylate cyclase complex by measurement of cAMP levels. Finally, the molecular weight of the receptor was estimated by affinity labeling techniques. Studies using 125I-VIP and unlabeled competing peptides revealed a single class of high affinity binding sites with a dissociation constant (KD) of 17 +/- 2 nM (mean +/- S.E.M.) for VIP, 275 +/- 46 nM for peptide histidine isoleucine (PHI), and 1380 +/- 800 nM for human pancreatic growth hormone releasing factor (GHRF). VIP and PHI each stimulated intracellular cAMP accumulation in a dose-dependent manner; both peptides demonstrated synergism with forskolin. In contrast, GHRF neither stimulated accumulation of cAMP nor demonstrated synergism with forskolin. VIP plus PHI (1 microM each) caused no significant increase in cAMP over either VIP or PHI alone, implying that the two peptides act through the same receptor. Covalent crosslinking of 125I-VIP to its binding site using either disuccinimidyl suberate (DSS) or ethylene glycol bis(succinimidyl succinate) (EGS) was followed by SDS-PAGE and autoradiography. The result is consistent with an Mr 47 000 VIP-binding subunit comprising or being associated with the VIP receptor of GH3 pituitary tumor cells.  相似文献   
8.
Summary In the testis of Esox lucius at the time of spermiation, activity of cyclic adenosine 3,5-monophosphate (cAMP) was immunocytochemically localized at the level of the Sertoli cells. In these cells adenylate cyclase activity was also ultracytochemically demonstrated by using adenylyl imidodiphosphate as a substrate. Reaction products of adenylate cyclase were primarily detectable on the basal and adluminal plasma membranes and on the surface of protrusions of the cell body into the lumen.  相似文献   
9.
Summary Gonadotropin releasing hormone enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in pituitary, testis, liver and kidney. Dose response relationships revealed that at a concentration of 1 nanomolar, gonadotropin releasing hormone caused a maximal augmentation of guanylate cyclase activity and that increasing its concentration to the millimolar range caused no further enhancement of this enzyme. There was an absolute cation requirement for gonadotropin releasing hormone's enhancement of guanylate cyclase activity as there was no increase without any cation present. Gonadotropin releasing hormone could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of gonadotropin releasing hormone.  相似文献   
10.
The diterpene forskolin stimulated rat cardiac adenylate cyclase activity at least 20-fold and potentiated the effect of NaF. The stimulatory effect of forskolin was reduced in the presence of Gpp(NH)p. Ethanol markedly reduced the stimulation of adenylate cyclase by forskolin while potentiating NaF and Gpp(NH)p stimulation. The inhibitory effect of ethanol on forskolin stimulation appeared to be of a mixed type with both a competitive and a non-competitive component. Three other short-chain linear alcohols (methanol, propanol, butanol) also inhibited forskolin-stimulation, this effect being proportional to the number of carbon atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号