首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有27条查询结果,搜索用时 937 毫秒
1.
2.
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor Sadenosylmethionine, which, after transferring its methyl group, is converted to S‐adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.  相似文献   
3.
Auxin‐deprived, senescent, suspension‐cultured pear ( Pyrus communis cv. Passe Crassane) fruit cells that can be stimulated to produce ethylene were employed in the search for a possible interdependence between DNA methylation levels and ethylene production. Neither short‐term stimulation of ethylene production by CuCl2, nor longer‐term stimulation by auxin, nor the inhibition of ethylene biosynthesis had a significant effect on the cellular level of DNA methylation. However, short‐term exposure to S‐adenosylhomocysteine enhanced cellular ethylene production and long‐term exposure to azacytidine resulted in the reduction of both DNA methylation levels and stress‐induced ethylene production. These and other correlative findings, or lack thereof, are discussed in the context of ethylene physiology, DNA methylation/demethylation, and epigenetic control.  相似文献   
4.
The crystal structure of the Thermotoga maritima gene product TM0269, determined as part of genome-wide structural coverage of T. maritima by the Joint Center for Structural Genomics, revealed structural homology with the fourth module of the cobalamin-dependent methionine synthase (MetH) from Escherichia coli, despite the lack of significant sequence homology. The gene specifying TM0269 lies in close proximity to another gene, TM0268, which shows sequence homology with the first three modules of E. coli MetH. The fourth module of E. coli MetH is required for reductive remethylation of the cob(II)alamin form of the cofactor and binds the methyl donor for this reactivation, S-adenosylmethionine (AdoMet). Measurements of the rates of methionine formation in the presence and absence of TM0269 and AdoMet demonstrate that both TM0269 and AdoMet are required for reactivation of the inactive cob(II)alamin form of TM0268. These activity measurements confirm the structure-based assignment of the function of the TM0269 gene product. In the presence of TM0269, AdoMet, and reductants, the measured activity of T. maritima MetH is maximal near 80 degrees C, where the specific activity of the purified protein is approximately 15% of that of E. coli methionine synthase (MetH) at 37 degrees C. Comparisons of the structures and sequences of TM0269 and the reactivation domain of E. coli MetH suggest that AdoMet may be bound somewhat differently by the homologous proteins. However, the conformation of a hairpin that is critical for cobalamin binding in E. coli MetH, which constitutes an essential structural element, is retained in the T. maritima reactivation protein despite striking divergence of the sequences.  相似文献   
5.
6.
R M Houser  R E Olson 《Life sciences》1974,14(7):1211-1219
Radioactive 5-desmethylubiquinone-9 has been isolated from mitochondria synthesizing ubiquinone-9-14C from p-hydroxybenzoate-U-14C. By mass spectrometry, the natural 5-desmethylubiquinone-9 has been shown to be identical with that chemically synthesized from fumigatol and solanesol. Synthetic 5-desmethylubiquinone-9-3H can be methylated to ubiquinone-9-3H by S-adenosyl-L-methionine in submitochondrial particles.  相似文献   
7.
Adenosine is rapidly metabolized by isolated rat livers. The major products found in the perfusate were inosine and uric acid while hypoxanthine could also be detected. S-Adenosylhomocysteine was also excreted when the liver was perfused with both adenosine and L-homocysteine. A considerable portion of the added adenosine was salvaged via the adenosine kinase reaction. The specific radioactivity of the resultant AMP reached 75–80% of the added [8-14C]adenosine within 90 min. When the liver was perfused with adenosine alone, hydrolysis of S-adenosyllhomosysteine, via S-adenosylhomocysteine hydrolase, appeared to be blocked resulting in the accumulation of this compound. As the intracellular level of S-adenosylhomocysteine increased, the rates of various methyltransferase reactions were reduced, resulting in elevated levels of intracellular S-adenosylmethionine. When the liver was perfused with normal plasma levels of methionine the S-adenosylmethionine : S-adenosylhomocysteine ratio was 5.3 and the half-life of the methyl groups was 32 min. Upon further addition of adenosien the S-adenosylmethionine : S-adenosylhomocysteine ratio shifted to 1.7 and the half-life of the methyl groups to 103 min. In the presence of adenosine and L-homocysteine such inordinate amounts of S-adenosylhomocysteine accumulated in the cell that methylation reactions were completely inhibited. Although adenine has been found to be a product of the S-adenosylhomocysteine hydrolase only trace quantities of this compound were detectable in the tissue after perfusing the liver with high concentrations of adenosine for 90 min.  相似文献   
8.
An alternative route for haem b biosynthesis is operative in sulfate-reducing bacteria of the Desulfovibrio genus and in methanogenic Archaea. This pathway diverges from the canonical one at the level of uroporphyrinogen III and progresses via a distinct branch, where sirohaem acts as an intermediate precursor being converted into haem b by a set of novel enzymes, named the alternative haem biosynthetic proteins (Ahb). In this work, we report the biochemical characterisation of the Desulfovibrio vulgaris AhbD enzyme that catalyses the last step of the pathway. Mass spectrometry analysis showed that AhbD promotes the cleavage of S-adenosylmethionine (SAM) and converts iron-coproporphyrin III via two oxidative decarboxylations to yield haem b, methionine and the 5′-deoxyadenosyl radical. Electron paramagnetic resonance spectroscopy studies demonstrated that AhbD contains two [4Fe–4S]2 +/1 + centres and that binding of the substrates S-adenosylmethionine and iron-coproporphyrin III induces conformational modifications in both centres. Amino acid sequence comparisons indicated that D. vulgaris AhbD belongs to the radical SAM protein superfamily, with a GGE-like motif and two cysteine-rich sequences typical for ligation of SAM molecules and iron-sulfur clusters, respectively. A structural model of D. vulgaris AhbD with putative binding pockets for the iron-sulfur centres and the substrates SAM and iron-coproporphyrin III is discussed.  相似文献   
9.
S-腺苷甲硫氨酸合成酶(SamS)是目前已知的唯一在生物体内催化腺苷甲硫氨酸合成的酶。它是除自身以外、所有甲基化反应的甲基供体,并且参与多胺的生物合成。多胺对于稳定DNA、RNA和蛋白质大分子的双螺旋结构具有重要作用,和DNA的甲基化一起参与了基因组的印迹(impriting)过程。在分离到SamS基因的基础上,本文通过Northernblot和酶活两种方法,对该基因在野生型果蝇和四个等位突变体发育过程中主要阶段的转录和转译水平进行了测定。野生型果蝇由瑞典Umea大学果蝇中心提供。由于该基因的突变是阴性致死突变,研究中采用了杂合子突变体:Su(z)5,L(2)M6,L(2)R23和Df(2L)PM44,均由所在实验室诱变获得。Northern分析时,以cDNA#10和a微管蛋白基因为探针,分析果蝇卵巢、幼虫、蛹、胚胎、雄性和雌性成蝇中该基因Poly(A)RNA的转录水平。通过测定蛋白粗提物中的酶活,分析果蝇卵巢、幼虫、蛹、以及雄性成蝇腹部组织中该基因的翻译水平。Fig.1,2&3表明:SamS基因主要在成熟雌蝇的卵巢中高表达,在雄性成蝇中该基因的表达水平明显低于雌性。在其它发育阶段及组织部位中仅维持  相似文献   
10.
A gas chromatographic-mass spectrometric method for quantitative determination of 9 alpha, 11 alpha-dihydroxy-15-oxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid, the major urinary metabolite of prostaglandin F2 alpha (PGF-M), was developed. The metabolite was analyzed as the dimethyl ester-O-methyloxime-bis-trimethylsilyl ether derivative. The internal standard consisted of a mixture of diethyl ester + monoethyl ester-delta-lactone of PGF-M. Those two species were converted to the 1-methyl-20-ethyl ester derivative during the analytical process. Linear standard curves were developed in the range 0 to 100 ng of injected prostaglandin. The method comprised extraction with Amberlite XAD-2, methylation, chromatography over octadecasilyl-silica, delactonization, remethylation, and chromatography over silicic acid and Lipidex-5000, followed by methoximation, trimethylsilylation, and instrumental analysis. Interassay coefficient of variation, for the analysis of four identical urine specimens, was 7% and intraassay coefficient of variation, when each sample was injected four times, ranged from 3.2 to 6.0%. Specificity, accuracy, and precision of the method were verified by recovery of the metabolite from two different urine pools. The recovery of authentic, underivatized PGF-M added to urine was 99.1 +/- 2.4% (mean +/- SE, N = 6). The plot of recovered versus added metabolite followed the equation y = 0.936 x + 25.8, with r = 0.9918.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号