首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   0篇
  国内免费   5篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   15篇
  2017年   3篇
  2016年   7篇
  2015年   13篇
  2014年   29篇
  2013年   24篇
  2012年   16篇
  2011年   13篇
  2010年   16篇
  2009年   13篇
  2008年   8篇
  2007年   6篇
  2006年   8篇
  2005年   12篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有274条查询结果,搜索用时 24 毫秒
1.
The fatty-acyl-CoA beta-oxidation (FAO) and catalase activities, as well as membrane fluidity of liver peroxisomes of newborns from normal and clofibrate-treated rats were studied during the recovery period, ie, throughout the first week of postnatal life. In the test animals the enzyme activities, which are significantly higher than controls at birth return to normal levels showing a somewhat different time course with FAO rapidly decreasing to control values within three days but with catalase still higher than controls at day 6. The half-life and degradation rate (Kd) of FAO are identical to those calculated by us for the whole organelles and to those reported by others for total catalase in normal or clofibrate-treated adult animals in the presence of catalase inhibitors. Soluble catalase shows turnover values which are similar though not identical to those of FAO, while total catalase has a very long half-life and a low Kd. Peroxisomal membrane fluidity, as determined by fluorescence anisotropy of 1-anilinonaphthalene-8-sulfonate (ANS) bound to purified peroxisomal fractions is higher in tests than in controls, recovering normal values within 6 days. Our results demonstrate that liver peroxisomes of rats prenatally exposed to clofibrate return to control conditions within about 1 week. The turnover parameters of enzymes and the membrane fluidity values are discussed in terms of disposal mechanism(s) for the excess of induced peroxisomes.  相似文献   
2.
The effect of ciprofibrate, a hypolipidemic drug, was examined in the metabolism of palmitic (C16:0) and lignoceric (C24:0) acids in rat liver. Ciprofibrate is a peroxisomal proliferating drug which increases the number of peroxisomes. The palmitoyl-CoA ligase activity in peroxisomes, mitochondria and microsomes from ciprofibrate treated liver was 3.2, 1.9 and 1.5-fold higher respectively and the activity for oxidation of palmitic acid in peroxisomes and mitochondria was 8.5 and 2.3-fold higher respectively. Similarly, ciprofibrate had a higher effect on the metabolism of lignoceric acid. Treatment with ciprofibrate increased lignoceroyl-CoA ligase activity in peroxisomes, mitochondria and microsomes by 5.3, 3.3 and 2.3-fold respectively and that of oxidation of lignoceric acid was increased in peroxisomes and mitochondria by 13.4 and 2.3-fold respectively. The peroxisomal rates of oxidation of palmitic acid (8.5-fold) and lignoceric acid (13.4-fold) were increased to a different degree by ciprofibrate treatment. This differential effect of ciprofibrate suggests that different enzymes may be responsible for the oxidation of fatty acids of different chain length, at least at one or more step(s) of the peroxisomal fatty acid -oxidation pathway.  相似文献   
3.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   
4.
The Δ9-desaturase system in liver microsome from rats treated chronically with ethanol was studied. Stearoyl-CoA desaturase activity decreased by 80% and palmitoyl-CoA desaturase activity was not detectable in microsomes from ethanol-fed rats, while activities of electron transport components such as NADH-cytochrome c and NADH-ferricyanide reductases remained unchanged. However, chronic ethanol administration resulted in an adaptive induction of the activity of NADPH-cytochrome c reductase and the contents of cytochrome b5 and P-450. The activity of the terminal component (cyanide-sensitive factor; CSF) of the desaturase system was greatly depressed by ethanol treatment. The NADH/NAD ratio in microsomes of ethanol-fed rats increased over 2-fold. These results suggest that, during chronic ethanol ingestion, decreased activities of Δ9-desaturases are due mainly to a decreased content of the terminal component of the desaturase system.  相似文献   
5.
The relationship between extracellular palmitate and the accumulation of long-chain fatty-acyl coenzyme A with that of high-energy phosphate metabolism was investigated in the isolated perfused diabetic rat heart. Hearts were perfused with a glucose/albumin buffer supplemented with 0, 0.5, 1.2 or 2.0 mM palmitate. 31P-NMR was used to analyze phosphocreatine and ATP metabolism during 1 h of constant-flow recirculation perfusion. At the end of perfusion, frozen samples were taken for chemical analysis of high-energy phosphates and the free and acylated fractions of coenzyme A and carnitine. Perfusion of diabetic hearts with palmitate, unlike control hearts, caused a time-dependent and concentration-dependent reduction in ATP, despite normal and constant phosphocreatine. Concentrations of acid-soluble coenzyme A, long-chain-acyl coenzyme A and total tissue coenzyme A were elevated in palmitate-perfused diabetic hearts, while the total tissue carnitine pool was decreased. Increases in long-chain-acyl coenzyme A correlated with the reduction in myocardial ATP. This reduction in ATP could not be adequately explained by alterations in heart rate, perfusion pressure or vascular resistance.  相似文献   
6.
Summary Investigations were performed on the influence of the phospholipid composition and physicochemical properties of the rat liver microsomal membranes on acyl-CoA synthetase and acyl-CoA : 1-acyl-sn-glycero-3-phosphocholine O-acyltransferase activities. The phospholipid composition of the membranes was modified by incubation with different phospholipids in the presence of lipid transfer proteins or by partial delipidation with exogenous phospholipase C and subsequent enrichment with phospholipids. The results indicated that the incorporation of phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine induced a marked activation of acyl-CoA synthetase for both substrates used—palmitic and oleic acids. Sphingomyelin occurred as specific inhibitor for this activity especially for palmitic acid. Palmitoyl-CoA: and oleoyl-CoA : lacyl-sn-glycero-3-phosphocholine acyltransferase activities were found to depend on the physical state of the membrane lipids. The alterations in the membrane physical state were estimated using two different fluorescent probes—1,6-diphenyl-1,3,5-hexatriene and pyrene. In all cases of membrane fluidization this activity was elevated. On the contrary, in more rigid membranes obtained by incorporation of sphingomyelin and dipalmitoylphosphatidylcholine, acyltransferase activity was reduced for both palmitoyl-CoA and oleoyl-CoA. We suggest a certain similarity in the way of regulation of membrane-bound acyltransferase and phospholipase A2 which both participate in the deacylation-reacylation cycle.  相似文献   
7.
M. Mancha  J. Sanchez 《Phytochemistry》1981,20(9):2139-2142
The synthesis of lipids from radioactive fatty acids in developing sunflower seeds has been examined. Lauric, palmitic, stearic and oleic acids were us  相似文献   
8.
The use of insect sex pheromones is an alternative technology for pest control in agriculture and forestry, which, in contrast to insecticides, does not have adverse effects on human health or environment and is efficient also against insecticide-resistant insect populations. Due to the high cost of chemically synthesized pheromones, mating disruption applications are currently primarily targeting higher value crops, such as fruits. Here we demonstrate a biotechnological method for the production of (Z)-hexadec-11-en-1-ol and (Z)-tetradec-9-en-1-ol, using engineered yeast cell factories. These unsaturated fatty alcohols are pheromone components or the immediate precursors of pheromone components of several economically important moth pests. Biosynthetic pathways towards several pheromones or their precursors were reconstructed in the oleaginous yeast Yarrowia lipolytica, which was further metabolically engineered for improved pheromone biosynthesis by decreasing fatty alcohol degradation and downregulating storage lipid accumulation. The sex pheromone of the cotton bollworm Helicoverpa armigera was produced by oxidation of fermented fatty alcohols into corresponding aldehydes. The resulting yeast-derived pheromone was just as efficient and specific for trapping of H. armigera male moths in cotton fields in Greece as a conventionally produced synthetic pheromone mixture. We further demonstrated the production of (Z)-tetradec-9-en-1-yl acetate, the main pheromone component of the fall armyworm Spodoptera frugiperda. Taken together our work describes a biotech platform for the production of commercially relevant titres of moth pheromones for pest control via yeast fermentation.  相似文献   
9.
Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.  相似文献   
10.
Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC50?=?78.7 and 64.7 µM) and but also for palmitic acid (IC50?=?236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC50?=?411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC50?=?57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号