首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5586篇
  免费   547篇
  国内免费   378篇
  2024年   15篇
  2023年   167篇
  2022年   222篇
  2021年   385篇
  2020年   368篇
  2019年   409篇
  2018年   331篇
  2017年   222篇
  2016年   193篇
  2015年   244篇
  2014年   345篇
  2013年   474篇
  2012年   261篇
  2011年   346篇
  2010年   196篇
  2009年   216篇
  2008年   212篇
  2007年   239篇
  2006年   217篇
  2005年   183篇
  2004年   142篇
  2003年   136篇
  2002年   96篇
  2001年   105篇
  2000年   85篇
  1999年   61篇
  1998年   59篇
  1997年   61篇
  1996年   46篇
  1995年   47篇
  1994年   39篇
  1993年   37篇
  1992年   39篇
  1991年   36篇
  1990年   23篇
  1989年   26篇
  1988年   29篇
  1987年   24篇
  1986年   30篇
  1985年   38篇
  1984年   23篇
  1983年   11篇
  1982年   15篇
  1981年   12篇
  1980年   9篇
  1979年   11篇
  1978年   6篇
  1977年   4篇
  1975年   3篇
  1973年   6篇
排序方式: 共有6511条查询结果,搜索用时 15 毫秒
1.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
2.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
3.
Elucidation of the pathogenesis in respiratory chain diseases is of great importance for developing specific treatments. The limitations inherent to the use of patient material make studies of human tissues often difficult and the mouse has therefore emerged as a suitable model organism for studies of respiratory chain diseases. In this review, we present an overview of the field and discuss in depth a few examples of animal models reproducing pathology of human disease with primary and secondary respiratory chain involvement.  相似文献   
4.
Abstract

Microorganisms capable of aerobic respiration on ferrous ions are spread throughout eubacterial and archaebacterial phyla. Phylogenetically distinct organisms were shown to express spectrally distinct redox‐active biomolecules during autotrophic growth on soluble iron. A new iron‐oxidizing eubacterium, designated as strain Funis, was investigated. Strain Funis was judged to be different from other known iron‐oxidizing bacteria on the bases of comparative lipid analyses, 16S rRNA sequence analyses, and cytochrome composition studies. When grown autotrophically on ferrous ions, Funis produced conspicuous levels of a novel acid‐stable, acid‐soluble yellow cytochrome with a distinctive absorbance peak at 579 nm in the reduced state.

Stopped‐flow spectrophotometric kinetic studies were conducted on respiratory chain components isolated from cell‐free extracts of Thiobacillus ferrooxidans. Experimental results were consistent with a model where the primary oxidant of ferrous ions is a highly aggregated c‐type cytochrome that then reduces the periplasmic rusticyanin. The Fe(II)‐dependent, cytochrome c‐catalyzed reduction of the rusticyanin possessed three kinetic properties in common with corresponding intact cells that respire on iron: the same anion specificity, a similar dependence of the rate on the concentration of ferrous ions, and similar rates at saturating concentrations of ferrous ions  相似文献   
5.
《Cell reports》2020,30(3):739-754.e4
  1. Download : Download high-res image (99KB)
  2. Download : Download full-size image
  相似文献   
6.
Mycotoxins are fungal metabolite which may in some cases exhibit a high health hazard potential. Mycotoxins can show carcinogenic, mutagenic, toxic, teratogenic or immunotoxic effects. Mycotoxin exposure in the workplace may occur through inhalation and skin contact,e.g. during occupational handling of organic matter such as livestock feed, food products, or waste. Various studies suggest that both acute and chronic effects can occur, depending at least on the exposure level. The magnitude of the potential health risks associated with a respiratory or dermal intake of mycotoxins has largely remained unclear to date. However, according to the directive 2000/54/EC on biological agents and the corresponding German Biological Agents Ordinance, employers are also required to consider the potential hazards posed by toxic effects of biological agents when assessing workplace risks. The aim of this article, therefore, is to present some basis information that should facilitate an evaluation of the significance of mycotoxins in the context of assessing workplace risks. It also provides suggestions for occupational health and safety measures.  相似文献   
7.
8.
9.
10.
Astrocytes have long been considered as just providing trophic support for neurons in the central nervous system, but recently several studies have highlighted their importance in many functions such as neurotransmission, metabolite and electrolyte homeostasis, cell signaling, inflammation, and synapse modulation. Astrocytes are, in fact, part of a bidirectional crosstalk with neurons. Moreover, increasing evidence is stressing the emerging role of astrocyte dysfunction in the pathophysiology of neurological disorders, including neurodegenerative disease, stroke, epilepsy, migraine, and neuroinflammatory diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号