首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
  国内免费   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
Ribulosebisphosphate carboxylase/oxygenase (EC 4.1.1.39) (rubisco) must be fully activated in order to catalyze the maximum rates of photosynthesis observed in plants. Activation of the isolated enzyme occurs spontaneously, but conditions required to observe full activation are inconsistent with those known to occur in illuminated chloroplasts. Genetic studies with a nutant of Arabidopsis thaliana incapable of activating rubisco linked two chloroplast polypeptides to the activation process in vivo. Using a reconstituted light activation system, it was possible to demonstrate the participation of a chloroplast protein in rubisco activation. These results indicate that a specific chloroplast enzyme, rubisco activase, catalyzes the activation of rubisco in vivo.  相似文献   
2.
3.
4.
The photosynthetic CO2 fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) forms dead-end inhibited complexes while binding multiple sugar phosphates, including its substrate ribulose 1,5-bisphosphate. Rubisco can be rescued from this inhibited form by molecular chaperones belonging to the ATPases associated with diverse cellular activities (AAA+ proteins) termed Rubisco activases (Rcas). The mechanism of green-type Rca found in higher plants has proved elusive, in part because until recently higher-plant Rubiscos could not be expressed recombinantly. Identifying the interaction sites between Rubisco and Rca is critical to formulate mechanistic hypotheses. Toward that end here we purify and characterize a suite of 33 Arabidopsis Rubisco mutants for their ability to be activated by Rca. Mutation of 17 surface-exposed large subunit residues did not yield variants that were perturbed in their interaction with Rca. In contrast, we find that Rca activity is highly sensitive to truncations and mutations in the conserved N terminus of the Rubisco large subunit. Large subunits lacking residues 1–4 are functional Rubiscos but cannot be activated. Both T5A and T7A substitutions result in functional carboxylases that are poorly activated by Rca, indicating the side chains of these residues form a critical interaction with the chaperone. Many other AAA+ proteins function by threading macromolecules through a central pore of a disc-shaped hexamer. Our results are consistent with a model in which Rca transiently threads the Rubisco large subunit N terminus through the axial pore of the AAA+ hexamer.  相似文献   
5.
选用小麦‘ML7113’品种为材料,人工模拟He-Ne激光(5mJ·s-1·mm-2)、增强UV-B(10.8kJ·m-2·d-1)辐射及两者复合辐照进行处理,利用叶绿素荧光仪、考马斯亮蓝G-250染色法和PCR技术研究7d龄小麦幼苗叶绿素荧光特性、Rubisco活化酶含量、基因表达量及其基因序列的变化。结果表明:(1)与对照组相比,增强UV-B辐射后,小麦幼苗叶绿素荧光特性减弱,Rubisco活化酶含量及其基因表达量均下降;而低剂量的He-Ne激光辐照后能够在一定程度上修复经UV-B辐射后对小麦幼苗叶绿素荧光特性所造成的损伤,且使Rubisco活化酶含量及其基因表达量上升。(2)与对照组相比,经He-Ne激光和增强UV-B辐射以及两者复合辐照处理后基因序列均出现两个相同的点突变,但并未造成氨基酸序列的变化。研究认为,低剂量He-Ne激光辐照能够在一定程度上修复受UV-B辐射小麦幼苗叶绿素荧光活性、Rubisco活化酶含量及其基因表达量的降低;He-Ne激光和增强UV-B辐射对小麦幼苗Rubisco活化酶活性的影响可能发生在其转录水平,从而使小麦光合能力发生相应的变化。  相似文献   
6.
The CO2-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IAC clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.  相似文献   
7.
The success of P. juliflora, an evergreen woody species has been largely attributed to temperature acclimation and stomatal control of photosynthesis under wide range of environmental conditions prevalent in India. We studied the contribution of the enzyme ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) in diurnal and seasonal photosynthesis changes in P. juliflora. The changes observed in photosynthesis under natural conditions could be effected by the growth temperatures, which ranged from 10–30 °C in winter to 30–47 °C in summer. However, the Total Rubisco activity displayed a constant diurnal pattern and showed a maximum at 1200 in all seasons namely spring, summer, monsoon and winter irrespective of the changes in temperature. The Total Rubisco activity from two cohorts of leaves produced in spring and monsoon appeared to be down-regulated differentially at low PPFD during the evening. The in vivo and in vitro measurements of carboxylation efficiency of Rubisco showed wide variation during the day and were correlated with the photosynthesis rate. The light activation of Rubisco showed the acclimation to moderately high temperatures in different seasons except in summer. The exceptionally high temperatures (>45 °C) in summer, though not affecting Total activity, severely inhibited the light activation of Rubisco and also modulated the recovery process for the activation of Rubisco. Our studies suggest that the modulation of Rubisco driven by Rubisco activase and not Rubisco per se was crucial for the diurnal regulation of photosynthesis. NBRI Publication No.: 528  相似文献   
8.
Oscillations in many of photosynthetic quantities with a period of about 1 min can be routinely measured with higher plant leaves after perturbation of the steady state by sudden change in gas phase. Among all hypotheses suggested so far to explain the oscillations, an effect of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activation status to control the oscillations is highly probable, at least upon high temperature (HT) treatment when in vivo RuBPCO activity controlled by RuBPCO activase (RuBPCO-A) decreases. Therefore, we measured the oscillations in fluorescence signal coming from barley leaves (Hordeum vulgare L. cv. Akcent) after their exposure for various time intervals to different HTs in darkness. We also evaluated steady state fluorescence and CO2 exchange parameters to have an insight to functions of electron transport chain within thylakoid membrane and Calvin cycle before initiation of the oscillations. The changes in period of the oscillations induced by moderate HT (up to 43 °C) best correlated with changes in non-photochemical fluorescence quenching (qN) that in turn correlated with changes in gross photosynthetic rate (P G) and rate of RuBPCO activation (kact). Therefore, we suggest that changes in period of the oscillations caused by moderate HT are mainly controlled by RuBPCO activation status. For more severe HT (45 °C), the oscillations disappeared which was probably caused by an insufficient formation of NADPH by electron transport chain within thylakoid membrane as judged from a decrease in photochemical fluorescence quenching (qP). Suggestions made on the basis of experimental data were verified by theoretical simulations of the oscillations based on a model of Calvin cycle and by means of a control analysis of the model.  相似文献   
9.
The reasons for the decline in net CO2 assimilation ( A ) above its thermal optimum are controversial. We tested the hypothesis that increasing the ratio of Rubisco activase to Rubisco catalytic site concentration would increase the activation state of Rubisco at high temperatures. We measured photosynthetic gas exchange, in vivo electron transport ( J ) and the activation state of Rubisco between 15 and 45 °C, at 38 and 76 Pa ambient CO2, in wild-type (WT) and anti- rbc S tobacco. The Rubisco content of the anti- rbc S lines was 30% (S7-1) or 6% (S7-2) of WT, but activase levels were the same in the three genotypes. Anti- rbc S plants had lower A than WT at all temperatures, but had a similar thermal optimum for photosynthesis as WT at both CO2 levels. In WT plants, Rubisco was fully activated at 32 °C, but the activation state declined to 64% at 42 °C. By contrast, the activation state of Rubisco was above 90% in the S7-1 line, between 15 and 42 °C. Both A and J declined about 20% from T opt to the highest measurement temperatures in WT and the S7-1 line, but this was fully reversed after a 20 min recovery at 35 °C. At 76 Pa CO2, predicted rates of RuBP regeneration-limited photosynthesis corresponded with measured A in WT tobacco at all temperatures, and in S7-1 tobacco above 40 °C. Our observations are consistent with the hypothesis that the high temperature decline in A in the WT is because of an RuBP regeneration limitation, rather than the capacity of Rubisco activase to maintain high Rubisco activation state.  相似文献   
10.
Characterized by a photocatalysis property, nanoanatase is closely related to the photosynthesis of spinach. It could not only improve light absorbance, transformation from light energy to electron energy, and active chemical energy, but also promote carbon dioxide (CO2) assimilation of spinach. However, the molecular mechanism of carbon reaction promoted by nanoanatase remains largely unclear. In this study, we report that the amounts of Rubisco activase (rca) mRNA in the nanoanatase-treated spinach were increased by about 51%, whereas bulk-TiO2 treatment produced an increase of only 5%. Accordingly, the protein level of Rubisco activase from the nanoanatase-treated spinach was increased by 42% compared with the control; however, bulk-TiO2 treatment resulted in a 5% improvement. Further analysis indicated that the activity of Rubisco activase in the nanoanatase-treated spinach was significantly higher than the control by up to 2.75 times, and bulk-TiO2 treatment had no such significant effects. Together, one of the molecular mechanisms of carbon reaction promoted by nanoanatase is that the nanoanatase treatment results in the enhancement of rca mRNA expressions, protein levels, and activities of Rubisco activase, thereby leading to the improvement of Rubisco carboxylation and the high rate of photosynthetic carbon reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号