首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2023年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
The acid phosphatase of an atypical Citrobacter sp. was purified in two isoforms, designated CPI and CPII, which had different Km values for glycerol 1-phosphate and glycerol 2-phosphate The enzyme was not inhibited by the end-product glycerol. Enzyme activity was increased in the presence of phosphate acceptor molecules having free hydroxyl groups (glycerol, methanol, ethanol). 31P-nuclear magnetic resonance spectroscopy indicated transfer of the liberated phosphate onto the alcohol, with the de novo production of (e.g.) glycerol 1-phosphate by enzyme supplemented with phosphomonoester substrate and glycerol.  相似文献   
2.
Ethylene plays an essential role in the development of cotton fibres. Ethylene biosynthesis in plants is elaborately regulated by the activities of key enzymes, 1-aminocyclopropane-1-carboxylate oxidase (ACO) and 1-aminocyclopropane-1-carboxylate synthase (ACS); however, the potential mechanism of post-translational modification of ACO and ACS to control ethylene synthesis in cotton fibres remains unclear. Here, we identify an E3 ubiquitin ligase, GhXB38D, that regulates ethylene biosynthesis during fibre elongation in cotton. GhXB38D gene is highly expressed in cotton fibres during the rapid elongation stage. Suppressing GhXB38D expression in cotton significantly enhanced fibre elongation and length, accompanied by the up-regulation of genes associated with ethylene signalling and fibre elongation. We demonstrated that GhXB38D interacts with the ethylene biosynthesis enzymes GhACS4 and GhACO1 in elongating fibres and specifically mediates their ubiquitination and degradation. The inhibition of GhXB38D gene expression increased the stability of GhACS4 and GhACO1 proteins in cotton fibres and ovules, resulting in an elevated concentration of ethylene. Our findings highlight the role of GhXB38D as a regulator of ethylene synthesis by ubiquitinating ACS4 and ACO1 proteins and modulating their stability. GhXB38D acts as a negative regulator of fibre elongation and serves as a potential target for enhancing cotton fibre yield and quality through gene editing strategy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号