首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2020年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
Highlights
  • •Liver Mallory-Denk-Body inducers elicited an IκBα-loss and NF-κB-activation.
  • •IκBα-loss was due to its sequestration into insoluble cytoplasmic aggregates.
  • •Four proteomic approaches identified 10 IκBα-interacting/aggregating proteins.
  • •Nup153/RanBP2-aggregation prevented IκBα nuclear entry for ending NF-κB-activation.
  相似文献   
2.
Butein and phloretin are chalcones that are members of the flavonoid family of polyphenols. Flavonoids have well-known antioxidant and anti-inflammatory activities. In rat primary hepatocytes, we examined whether butein and phloretin affect tert-butylhydroperoxide (tBHP)-induced oxidative damage and the possible mechanism(s) involved. Treatment with butein and phloretin markedly attenuated tBHP-induced peroxide formation, and this amelioration was reversed by l-buthionine-S-sulfoximine [a glutamate cysteine ligase (GCL) inhibitor] and zinc protoporphyrin [a heme oxygenase 1 (HO-1) inhibitor]. Butein and phloretin induced both HO-1 and GCL protein and mRNA expression and increased intracellular glutathione (GSH) and total GSH content. Butein treatment activated the ERK1/2 signaling pathway and increased Nrf2 nuclear translocation, Nrf2 nuclear protein-DNA binding activity, and ARE-luciferase reporter activity. The roles of the ERK signaling pathway and Nrf2 in butein-induced HO-1 and GCL catalytic subunit (GCLC) expression were determined by using RNA interference directed against ERK2 and Nrf2. Both siERK2 and siNrf2 abolished butein-induced HO-1 and GCLC protein expression. These results suggest the involvement of ERK2 and Nrf2 in the induction of HO-1 and GCLC by butein. In an animal study, phloretin was shown to increase GSH content and HO-1 expression in rat liver and decrease carbon tetrachloride-induced hepatotoxicity. In conclusion, we demonstrate that butein and phloretin up-regulate HO-1 and GCL expression through the ERK2/Nrf2 pathway and protect hepatocytes against oxidative stress.  相似文献   
3.
Sun J  Kim SJ  Park MK  Kim HJ  Tsoy I  Kang YJ  Lee YS  Seo HG  Lee JH  Chang KC 《FEBS letters》2005,579(25):5494-5500
We hypothesized that catecholamines through beta-adrenoceptor might modulate macrophage function. We showed that isoproterenol concentration-dependently induced HO-1 production through beta(1)-but not beta(2)-adrenoceptor. Production was increased by forskolin and inhibited by pretreatment with the PKA inhibitor, H-89. Furthermore, induction of HO-1 by isoproterenol effectively protected RAW264.7 cells from effects of glucose oxidase treatment, which was abrogated either by HO-1 inhibitor, ZnPP IX and beta-adenoceptor antagonist, propranolol. Thus, stimulation of HO-1 production through beta(1)-adenoceptors, and via the PKA pathways by isoproterenol, can enable RAW264.7 cells to resist oxidant stress, suggesting that catecholamine hormones may be necessary, at least, to maximize defending role of macrophages.  相似文献   
4.
Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.  相似文献   
5.
Hydrogen gas (H2) is an endogenous gaseous molecule in plants. Although its reputation is as a “biologically inert gas”, recent results suggested that H2 has therapeutic antioxidant properties in animals and plays fundamental roles in plant responses to environmental stresses. However, whether H2 regulates root morphological patterns is largely unknown. In this report, hydrogen-rich water (HRW) was used to characterize H2 physiological roles and possible signaling transduction pathways in the promotion of adventitious root (AR) formation in cucumber explants. Our results showed that a 50% concentration of HRW was able to mimic the effect of hemin, an inducer of a carbon monoxide (CO) synthetic enzyme, and heme oxygenase-1 (HO-1), in restoring AR formation in comparison with the inhibition effect conferred by auxin-depletion treatment alone. It was further shown that the inducible effect of HRW could be further blocked by the co-treatment with N-1-naphthylphtalamic acid (NPA; an auxin transport inhibitor). The HRW-induced response, at least partially, was HO-1-dependent. This conclusion was supported by the fact that the exposure of cucumber explants to HRW up-regulates cucumber HO-1 gene expression and its protein levels. HRW-mediated induction of representative target genes related to auxin signaling and AR formation, such as CsDNAJ-1, CsCDPK1/5, CsCDC6, CsAUX22B-like, and CsAUX22D-like, and thereafter AR formation (particularly in the AR length) was differentially sensitive to the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). Above blocking actions were clearly reversed by CO, further confirming that the above response was HO-1/CO-specific. However, the addition of a well-known antioxidant, ascorbic acid (AsA), failed to influence AR formation triggered by HRW, thus ruling out the involvement of redox homeostasis in this process. Together, these results indicated that HRW-induced adventitious rooting is, at least partially, correlated with the HO-1/CO-mediated responses. We also suggested that exogenous HRW treatment on plants might be a good option to induce root organogenesis.  相似文献   
6.
NADPH oxidase activation in either RAW264.7 cells or peritoneal macrophages (PM) derived from PPARγ wild-type mice increased reactive oxygen species (ROS) formation, caused PPARγ activation, heme oxygenase-1 (HO-1) induction, and concomitant IFN-β expression. In macrophages transduced with a dominant negative (d/n) mutant of PPARγ (RAW264.7 AF2) as well as PPARγ negative PM derived from Mac-PPARγ-KO mice, NADPH oxidase-dependent IFN-β expression was attenuated. As the underlying mechanism, we noted decreased HO-1 mRNA stability in RAW264.7 AF2 cells as well as PPARγ negative PM, compared to either parent RAW264.7 cells or wild-type PM. Assuming mRNA stabilization of HO-1 by PPARγ we transfected macrophages with a HO-1 3′-UTR reporter construct. The PPARγ agonist rosiglitazone significantly up-regulated luciferase expression in RAW264.7 cells, while it remained unaltered in RAW264.7 AF2 macrophages. Deletion of each of two AU-rich elements in the 3′-UTR HO-1 decreased luciferase activity in RAW264.7 cells. Using LPS as a NADPH oxidase activator, PM from Mac-PPARγ-KO mice showed a decreased HO-1 mRNA half-life in vitro and in vivo compared to PPARγ wild-type mice. These data identified a so far unappreciated role of PPARγ in stabilizing HO-1 mRNA, thus, contributing to the expression of the HO-1 target gene IFN-β.  相似文献   
7.
Ethyl pyruvate (EP), a simple ester of pyruvic acid, has been shown to act as an anti-inflammatory molecule under various pathological conditions, such as, during cerebral ischemia and sepsis in animal models. Here, the authors investigated the novel molecular mechanism underlying the anti-oxidative effect of EP in primary astrocyte cultures, particularly with respect to nuclear factor E2-related factor 2 (Nrf2) activation and hemeoxygenase 1 (HO-1) induction. EP was found to induce Nrf2 translocation and the inductions of various genes downstream of Nrf2 and these resulted in the amelioration of the oxidative damage of H(2)O(2). Furthermore, EP dose-dependently suppressed H(2)O(2)-induced astrocyte cell death (12h preincubation with 5mM EP increased cell survival after 1h exposure to 100 μM H(2)O(2) from 32.6±0.7% to 63±1.8%). HO-1 was markedly induced (4.9-fold) in EP-treated primary astrocyte cultures and Nrf2 was found to translocate from the cytosol to the nucleus and bind to the antioxidant response element (ARE) located on HO-1 promoter after EP treatment. siRNA-mediated HO-1 or Nrf2 knockdown and zinc protoporphyrin (ZnPP)-mediated inhibition of HO-1 activity showed that Nrf2 activation and HO-1 induction were responsible for the observed cytoprotective effect of EP, which was found to involve the ERK and Akt signaling pathways. Furthermore, EP-conditioned astrocyte culture media was found to have neuroprotective effects on primary neuronal cultures exposed to oxidative or excitotoxic stress, and this seemed to be mediated by glial cell line-derived neurotrophic factor (GDNF) and glutathione (GSH), which accumulated in EP-treated astrocyte culture media. Interestingly, we also found that in addition to HO-1, EP-induced Nrf2 activation increased the expressions of various anti-oxidant genes, including GST, NQO1, and GCLM. The study shows that EP-mediated Nrf2 activation and HO-1 induction in astrocytes act via autocrine and paracrine mechanisms to confer protective effects.  相似文献   
8.
Photodynamic antimicrobial activity of avian eggshell pigments   总被引:1,自引:0,他引:1  
Pigmentation in avian eggshells appears to be associated with shell strength, temperature regulation, and camouflage. The pigments found in eggshells are mainly porphyrins, which have been utilized therapeutically as photosensitizers. Here, we examined the photoinactivation of gram-positive (Staphylococcus aureus, Bacillus cereus) and gram-negative bacteria (Escherichia coli, Salmonella enteritidis) by hen eggshells and their pigments. The results indicated that eggshells have a light-dependent antimicrobial activity against gram-positive, but not gram-negative, bacteria. Our results indicate the possibility that the natural pigments used therapeutically have evolved in nature as a defence system.  相似文献   
9.
Hydrogen sulfide (H2S) is considered as a cellular signaling intermediate in higher plants, but corresponding molecular mechanisms and signal transduction pathways in plant biology are still limited. In the present study, a combination of pharmacological and biochemical approaches was used to study the effect of H2S on the alleviation of GA-induced programmed cell death (PCD) in wheat aleurone cells. The results showed that in contrast with the responses of ABA, GA brought about a gradual decrease of l-cysteine desulfhydrase (LCD) activity and H2S production, and thereafter PCD occurred. Exogenous H2S donor sodium hydrosulfide (NaHS) not only effectively blocked the decrease of endogenous H2S release, but also alleviated GA-triggered PCD in wheat aleurone cells. These responses were sensitive to hypotaurine (HT), a H2S scavenger, suggesting that this effect of NaHS was in an H2S-dependent fashion. Further experiment confirmed that H2S, rather than other sodium- or sulphur-containing compounds derived from the decomposing of NaHS, was attributed to the rescuing response. Importantly, the reversing effect was associated with glutathione (GSH) because the NaHS triggered increases of endogenous GSH content and the ratio of GSH/oxidized GSH (GSSG) in GA-treated layers, and the NaHS-mediated alleviation of PCD was markedly eliminated by l-buthionine-sulfoximine (BSO, a selective inhibitor of GSH biosynthesis). The inducible effect of NaHS was also ascribed to the modulation of heme oxygenase-1 (HO-1), because the specific inhibitor of HO-1 zinc protoporphyrin IX (ZnPP) significantly suppressed the NaHS-related responses. By contrast, the above inhibitory effects were reversed partially when carbon monoxide (CO) aqueous solution or bilirubin (BR), two of the by-products of HO-1, was added, respectively. NaHS-triggered HO-1 gene expression in GA-treated layers was also confirmed. Together, the above results clearly suggested that the H2S-delayed PCD in GA-treated wheat aleurone cells was associated with the modulation of GSH homeostasis and HO-1 gene expression.  相似文献   
10.
Although neuronal cells are highly vulnerable to oxidative stress, recent studies suggest that production of reactive oxygen species (ROS) increases during and is essential for neuronal differentiation. In addition, we have previously found that heme biosynthesis is up-regulated during retinoic acid-induced differentiation of Neuro2a cells. In the current study, we showed that this up-regulation of heme biosynthesis during differentiation is ROS-dependent. Furthermore, we found that ROS-dependent induction of heme oxygenase, which degrades heme and acts as an anti-oxidant, and catalase, another anti-oxidant enzyme that contains heme as a prosthetic group, occurs during differentiation. These results suggest that heme biosynthesis following the degradation of heme protects Neuro2a cells from oxidative stress caused by ROS during differentiation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号