首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   46篇
  国内免费   2篇
  2024年   5篇
  2023年   7篇
  2022年   1篇
  2021年   5篇
  2020年   9篇
  2019年   14篇
  2018年   6篇
  2017年   9篇
  2016年   20篇
  2015年   13篇
  2014年   20篇
  2013年   15篇
  2012年   13篇
  2011年   14篇
  2010年   8篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  1983年   1篇
排序方式: 共有171条查询结果,搜索用时 46 毫秒
1.
We demonstrate a method for the synthesis of multicomponent nanostructures consisting of CdS and CdSe with rod and tetrapod morphologies. A seeded synthesis strategy is used in which spherical seeds of CdSe are prepared first using a hot-injection technique. By controlling the crystal structure of the seed to be either wurtzite or zinc-blende, the subsequent hot-injection growth of CdS off of the seed results in either a rod-shaped or tetrapod-shaped nanocrystal, respectively. The phase and morphology of the synthesized nanocrystals are confirmed using X-ray diffraction and transmission electron microscopy, demonstrating that the nanocrystals are phase-pure and have a consistent morphology. The extinction coefficient and quantum yield of the synthesized nanocrystals are calculated using UV-Vis absorption spectroscopy and photoluminescence spectroscopy. The rods and tetrapods exhibit extinction coefficients and quantum yields that are higher than that of the bare seeds. This synthesis demonstrates the precise arrangement of materials that can be achieved at the nanoscale by using a seeded synthetic approach.  相似文献   
2.
Mono‐ and multimetallic nanoparticles (NPs) have diverse and tunable physicochemical properties that arise from their compositions as well as crystallite size and shape. The ability to control precisely the composition and structure of NPs through synthesis is central to achieving state‐of‐the‐art designer metal NPs for use as catalysts and electrocatalysts. However, a major limitation to the use of designer metal NPs as catalysts is the ability to scale their syntheses while maintaining structural precision. To address this challenge, continuous flow routes to metal NPs involving the use of droplet microreactors are being developed, providing the synthetic versatility necessary to achieve known and completely new nanostructures. This progress report outlines how the chemistry and process parameters of droplet microreactors can be used to achieve high performing nanocatalysts through control of NP composition, size, shape, and architecture and outlines directions toward previously unimaginable nanostructures.  相似文献   
3.
In this progress report, recent improvements to the room temperaturesyntheses of lead halide perovskite nanocrystals (APbX3, X = Cl, Br, I) are assessed, focusing on various aspects which influence the commercial viability of the technology. Perovskite nanocrystals can be prepared easily from low‐cost precursors under ambient conditions, yet they have displayed near‐unity photoluminescence quantum yield with narrow, highly tunable emission peaks. In addition to their impressive ambipolar charge carrier mobilities, these properties make lead halide perovskite nanocrystals very attractive for light‐emitting diode (LED) applications. However, there are still many practical hurdles preventing commercialization. Recent developments in room temperature synthesis and purification protocols are reviewed, closely evaluating the suitability of particular techniques for industry. This is followed by an assessment of the wide range of ligands deployed on perovskite nanocrystal surfaces, analyzing their impact on colloidal stability, as well as LED efficiency. Based on these observations, a perspective on important future research directions that can expedite the industrial adoption of perovskite nanocrystals is provided.  相似文献   
4.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   
5.
It is known that α-glucosidase is linked with the antioxidant activity. Therefore, it is of interest to document the in- vitro and molecular docking analysis of chalconeimine derivatives with α-glucosidase (PDB ID: 2ZEO) for further consideration.  相似文献   
6.
ZnO nanostructures of different morphology (nanorods, nano‐leaf, nanotubes) were favourably grown using a chemical precipitation process. The prepared ZnO nanostructures were characterized systematically using absorption spectroscopy, emission spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared studies. XRD results showed the hexagonal wurtzite phase of the synthesized ZnO nanostructures. Structural properties such as average crystallite size, lattice constants, volume of the unit cell, atomic fraction, and structural bonds were also studied. The optical band gap of the synthesized ZnO nanocrystals varied from 3.52 eV to 3.69 eV with high quantum yield of the blue emission (~420 nm). Urbach energy for ZnO nanocrystals was calculated to be 0.702 eV, 0.901 eV, and 0.993 eV for nanorods, nano‐leaf, and tube like ZnO crystals, respectively. Morphology of the fabricated nanostructures was investigated using SEM. Photocatalytic degradation of rhodamine B (Rh B) in solution under UV irradiation was explored with different ZnO morphology. Photocatalytic experiments showed that ZnO nano‐leaf had a higher degradation rate of photocatalytic activity of photodegrading Rh B compared with the other tube shape and rods shape nanostructures. The Rh B dye degraded considerably by ~79.05%, 74.41%, and 69.8% within 120 min in the presence of the as‐fabricated fern nano‐leaf, nanotubes, and nanorods of the ZnO nanocrystals at room temperature.  相似文献   
7.
The present work aims to synthesize zinc oxide (ZnO) nanoparticles via green approaches using leaf extract of Parthenium hysterophorus. UV–vis and FT-IR tests confirmed the existence of biomolecules, active materials, and metal oxides. The X-ray diffraction structural study exposes the ZnO nanoparticles formation with hexagonal phase structures. SEM and TEM analysis reveal surface morphologies of ZnO nanoparticles and most of them are spherical with a size range of 10 nm. ZnO nanoparticles were revealed strong antimicrobial activity against both bacterial and fungal strains. The germination of seeds and vegetative growth of Sesamum indicum has been greatly improved.  相似文献   
8.
To create core/shell/shell quantum dots (QDs) with high stability against a harmful chemical environment, CdTe/CdS QDs were coated with a ZnO shell in an aqueous solution. An interfaced CdS layer sandwiched between a CdTe core and ZnO shell provided relaxation of the strain at the core/shell interface since lattice parameters of CdS are intermediate between those of CdTe and ZnO. The photoluminescence (PL) peak wavelength of the core/shell/shell QDs was shifted from 569 to 615 nm by adjusting the size of CdTe cores and thickness of CdS and ZnO shells, along with the highest PL quantum yield of the core/shell/shell QDs reaching 80%, which implies promising applications in the field of biomedical labeling. Due to the decrease of surface defects, it was observed that PL lifetimes significantly increased at room temperature as follows: 29.6 34.2, and 47.5 ns for CdTe (537 nm), CdTe/CdS (555 nm) and CdTe/CdS/ZnO (581 nm) QDs, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号