首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNNN-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 M). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium.  相似文献   
2.
The intracellular homeostasis of zinc is postulated to be controlled by signaling through nitric oxide (NO). Administration of the NO donor S-nitrosocysteine (SNOC) caused a rapid drop in the fluorescence of the zinc-specific fluorescence of the zinc probe zinquin in C6 glioma cells. Tentatively, a strong effect of NO on the level of mobile intracellular zinc ions was concluded. However, zinc analysis with atomic absorption spectrometry demonstrated that the total cellular zinc level was not changed under these conditions. Sodium nitrite or an NO donor devoid of sulfhydryl groups (diethylamine NONOate) exerted no degrading effect on the Zn/zinquin fluorescence, but cysteine alone evoked a similar decline as SNOC. Hence, the sulfhydryl groups of cysteine seem to compete for zinc from the Zn/zinquin complex. Analysis of the reaction products by mass spectrometry demonstrated that cysteine caused a depletion of zinc from the Zn/zinquin complex, whereas an NO donor without sulfhydryl groups (diethylamine NONOate) did not. It is concluded that great caution should be employed when using S-nitroso compounds together with zinquin in investigations of intracellular zinc homeostasis.  相似文献   
3.
The present study was designed to investigate the incorporation of zinc (Zn) into cultured UMR-106 osteoblasts in response to mineralization caused by the addition of β-glycerophosphate. As a result of the induced mineralization, the contents of calcium (Ca), phosphorus (P), and Zn in the monolayer increased, whereas the magnesium (Mg) content did not change. The activity of alkaline phosphatase (ALP) also increased during the process. The zinc distribution in the cell monolayer was studied using Zinquin, a fluorescent zinc ion chelator. The double fluorescent labeling with Zinquin and calcein revealed that zinc was localized both as intracellular vesicles and extracellular clusters, whereas calcium was colocalized with extracellular zinc. These results suggest that zinc is involved in the mineralization process of UMR-106 cells.  相似文献   
4.
In mammalian cells, the intracellular availability of zinc influences numerous crucial processes. Its distribution has previously been visualized with several fluorescent probes, but it was unclear how these probes are compartmentalized within the cell. Here, we show that in C6 cells the zinc-specific probe Zinquin is evenly distributed. Thus, the significantly lower level of fluorescence in the nucleus and a punctuate vesicular staining are real differences in the concentrations of zinc. Chemical perturbation of the steady state by releasing intracellular protein-bound zinc with the sulfhydryl-reactive N-ethylmaleimide (NEM) resulted in a vanadate sensitive transport of zinc out of the nucleus and into zincosomes. If the zinc-release was performed with the histidine-reactive diethylpyrocarbonate, sequestration was reduced compared to treatment with NEM, indicating the importance of histidine within membrane zinc transporters. Another major factor regulating the zinc homeostasis is ion export. As determined by atomic absorption spectroscopy, up to 50% of the cellular zinc was exported by a mechanism sensitive to lanthanum ions. We conclude that different concentrations of labile zinc exist in different cellular compartments, which are maintained by export and intracellular transport of zinc.  相似文献   
5.
Airway epithelial cells (AEC) contain both pro- and anti-apoptotic factors but little is known about mechanisms regulating apoptosis of these cells. In this study we have examined the localization of pro-caspase-3 and Zn(2+), a cellular regulator of pro-caspase-3, in primary sheep and human AEC. Zn(2+) was concentrated in both cytoplasmic vesicles and ciliary basal bodies, in the vicinity of both pro-caspase-3 and the antioxidant Cu/Zn superoxide dismutase (Cu/Zn SOD). Depletion of intracellular Zn(2+) in sheep AEC, using the membrane permeant Zn(2+) chelator TPEN, increased lipid peroxidation in the apical cell membranes (as assessed by immunofluorescence with anti-hydroxynonenal) as well as increasing activated pro-caspase-3 and apoptosis. There were smaller increases in caspase-2 and -6 but not other caspases. Activation of caspase-3 in TPEN-treated AEC was inhibited strongly by N-acetylcysteine and partially by vitamin C and vitamin E. These findings suggest that cytoplasmic pro-caspase-3 is positioned near the lumenal surface of AEC where it is under the influence of Zn(2+) and other anti-oxidants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号