首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   121篇
  国内免费   1篇
  2024年   2篇
  2023年   1篇
  2020年   32篇
  2019年   39篇
  2018年   37篇
  2017年   33篇
  2016年   36篇
  2015年   15篇
  2014年   14篇
  2013年   11篇
  2012年   2篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   4篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有306条查询结果,搜索用时 62 毫秒
1.
Modelling species distributions has been widely used to understand present and future potential distributions of species, and can provide adaptation and mitigation information as references for conservation and management under climate change. However, various methods of data splitting to develop and validate functions of the models do not get enough attention, which may mislead the interpretation of predicted results. We used the Taiwanese endemic birds to test the influences of temporal independence of datasets on model performance and prediction. Training and testing data were considered to be independent if they were collected during different survey periods (1993–2004 and 2009–2010). The results indicated no significant differences of six model performance measures (AUC, kappa, TSS, accuracy, sensitivity, and specificity) among the combinations of training and testing datasets. Both species- and grid cell-based assessments differed significantly between predictions by the annual and pooled training data. We also found an average of 85.8% similarity for species presences and absences in different survey periods. The remaining dissimilarity was mostly caused by species observed in the late survey period but not in the early one. The method of data splitting, yielding training and testing data, is critical for resulting model species distributions. Even if similar model performance exists, different methods can lead to different species distributional maps. More attention needs to be given to this issue, especially when amplifying these models to project species distributions in a changing world.  相似文献   
2.
Nigel K. Packham  Robert C. Ford 《BBA》1986,852(2-3):183-190
Addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p) to detergent-solubilised Photosystem II (PS II) particles results in the photo-oxidation of carotenoid and inhibition of the steady-state oxygen-evolution rate. It has been proposed that ANT2p may modify the water-splitting reactions by mediating the transfer of reducing equivalents from endogenous electron donors, such as carotenoid, to the S2 and S3 oxidation states of PS II. In this paper we present evidence indicating that ANT2p can interact with PS II at two separate loci. The water-splitting complex is shown to be the primary site of attack by ANT2p, since artificial electron donors, such as 1,5-diphenylcarbazide (DPC), can restore PS II photochemical activity by feeding reducing equivalents directly to the reaction centre. The ANT2p interaction at this site is light-intensity dependent. A second inhibitory site close to the reaction centre P-680 chlorophyll is detected at slightly higher ANT2p concentrations. The inhibition at this site is unaffected either by changes in the actinic light intensity or by the addition of electron donors. The flash-induced oxidation of carotenoid has an ANT2p concentration dependence and an insensitivity to DPC which suggests that it results from the inhibition of the reaction centre and not with that of the water-splitting complex.  相似文献   
3.
The fatty acid composition and some physical properties of intact cells and isolated plasma membranes of two types of mouse myeloid leukemia cell clone grown in culture have been examined. One clone type, MGI+D+, can be induced by the macrophage and granulocyte-inducing protein (MGI) to differentiate into mature macrophages and granulocytes. The other clone type, MGI+D?, could not be induced to differentiate into mature cells. A two-fold increase in the ratio of saturated fatty acid to unsaturated fatty acid was found in the MGI+D? compared to the MGI+D+ clones. The MGI+D? clones produced an unusual polyunsaturated C20:5 fatty acid at 28°C, whereas the MGI+D+ clones did not grow at this temperature. The cells and their isolated plasma membranes were studied by electron spin resonance. The motion of the 5-nitroxide stearate spin label was found to be higher in the intact cells and in the membranes of MGI+D? clones than of the MGI+D+ clones. The cells of MGI+D+ clones showed a similar freedom of motion to normal myeloblasts from the bone marrow. The results indicate that myeloid leukemia cells which differ in their competence to be induced to differentiate into mature cells have different physical properties of their plasma membranes and that this is correlated with their fatty acid acyl chain composition.  相似文献   
4.
A novel polycationic ionen was synthesized and fractionated on carboxymethyl-Sephadex using a salt gradient in 7M urea. A series of oligomers of discrete length were characterised by ultraviolet spectra. The ultraviolet spectra of oligomers revealed a new band centred at 232.5 nm which was probably due to exciton splitting. Thermal denaturation studies indicated both stabilization of the helix conformation and a higher degree of cooperativity in the melting of DNA (oligomers)n complex as compared to native calf thymus DNA. Ionen oligomers exhibited large extrinsic Cotton effect at 232.5 nm which could be attributed to exciton interaction.  相似文献   
5.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg?1 h?1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   
6.
7.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
8.
Water splitting requires development of cost‐effective multifunctional materials that can catalyze both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) efficiently. Currently, the OER relies on the noble‐metal catalysts; since with other catalysts, its operation environment is greatly limited in alkaline conditions. Herein, an advanced water oxidation catalyst based on metallic Co9S8 decorated with single‐atomic Mo (0.99 wt%) is synthesized (Mo‐Co9S8@C). It exhibits pronounced water oxidization activity in acid, alkali, and neutral media by showing positive onset potentials of 200, 90, and 290 mV, respectively, which manifests the best Co9S8‐based single‐atom Mo catalyst till now. Moreover, it also demonstrates excellent HER performance over a wide pH range. Consequently, the catalyst even outperforms noble metal Pt/IrO2‐based catalysts for overall water splitting (only requiring 1.68 V in acid, and 1.56 V in alkaline). Impressively, it works under a current density of 10 mA cm?2 with no obvious decay during a 24 h (0.5 m H2SO4) and 72 h (1.0 m KOH) durability experiment. Density functional theory (DFT) simulations reveal that the synergistic effects of atomically dispersed Mo with Co‐containing substrates can efficiently alter the binding energies of adsorbed intermediate species and decrease the overpotentials of the water splitting.  相似文献   
9.
The unprecedented increase of the power conversion efficiency of metal‐halide perovskite solar cells has significantly outpaced the understanding of their fundamental properties. One of the biggest puzzles of perovskites has been the exciton binding energy, which has proved to be difficult to determine experimentally. Many contradictory reports can be found in the literature with values of the exciton binding energy from a few meV to a few tens of meV. In this review the results of the last few years of intense investigation of the exciton physic in perovskite materials are summarized. In particular a critical overview of the different experimental approaches used to determine exciton binding energy is provided. The problem of exciton binding energy in the context of the polar nature of perovskite crystals and related polaron effects which have been neglected to date in most of work is discussed. It is shown that polaron effects can reconcile at least some of the experimental observations and controversy present in the literature. Finally, the current status of the exciton fine structure in perovskite materials is summarized. The peculiar carrier–phonon coupling can help to understand the intriguing efficiency of light emission from metal‐halide perovskites.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号