首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4179篇
  免费   69篇
  国内免费   155篇
  2023年   22篇
  2022年   66篇
  2021年   57篇
  2020年   46篇
  2019年   51篇
  2018年   91篇
  2017年   57篇
  2016年   51篇
  2015年   83篇
  2014年   237篇
  2013年   304篇
  2012年   227篇
  2011年   281篇
  2010年   224篇
  2009年   139篇
  2008年   206篇
  2007年   186篇
  2006年   178篇
  2005年   189篇
  2004年   165篇
  2003年   148篇
  2002年   119篇
  2001年   56篇
  2000年   81篇
  1999年   81篇
  1998年   82篇
  1997年   58篇
  1996年   64篇
  1995年   80篇
  1994年   59篇
  1993年   53篇
  1992年   40篇
  1991年   55篇
  1990年   36篇
  1989年   41篇
  1988年   52篇
  1987年   49篇
  1986年   33篇
  1985年   40篇
  1984年   64篇
  1983年   43篇
  1982年   52篇
  1981年   29篇
  1980年   24篇
  1979年   26篇
  1978年   19篇
  1976年   18篇
  1975年   7篇
  1974年   10篇
  1973年   8篇
排序方式: 共有4403条查询结果,搜索用时 31 毫秒
1.
Yeast DNA ligase is radioactively labelled in vitro by incubating a crude cell extract with [α-32P]ATP. The product of this reaction is the stable covalent ligase-AMP adduct, which can be characterized by its reactivity with either pyrophosphate or nicked DNA and visualized by gel electrophoresis and autoradiography. The Saccharomyces cerevisiae DNA ligase was identified as an 89 kDa polypeptide by exploiting the fact that transformants with multiple copies of the plasmid-encoded DNA ligase (CDC9) gene overproduce the enzyme by two orders of magnitude. A similar strategy has been used to identify the Schizosaccharomyces pombe DNA ligase as an 87 kDa polypeptide. Both values agree well with the coding capacities of the respective cloned gene sequences. When the S. cerevisiae ligase is greatly overproduced with respect to wild-type levels, a second polypeptide of 78.5 kDa is also labelled and has the same properties as the 89 kDa adduct. We suggest that this polypeptide is generated by proteolysis.  相似文献   
2.
The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10−3, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in kcat values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.  相似文献   
3.
Heme a was not detected either in mitochondria isolated from copper-deficient yeast or in the intact cells. Nevertheless, the intracellular concentration of free porphyrins indicated that the pathway of porphyrin and heme synthesis was not impaired in copper-deficient cells. The immunoprecipitated apo-oxidase from copper-deficient cells revealed an absorption spectrum with maxima at 645, 592, 559, 519 and 423 nm, similar to that of purified porphyrin a. When solubilized mitochondria from [3H]leucine and δ-amino[14C]levulinic acid-labeled copper-deficient yeast cells were incubated with rabbit antiserum against cytochrome c oxidase, a precipitate was obtained. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of this immunoprecipitate showed [3H]leucine associated with six bands and δ-amino[14C]levulinic acid resolved in a single band. HCl fractionation of copper-deficient mitochondria labeled with δ-amino[14C]levulinic acid showed a high specific radioactivity in the fraction extracted by 20% HCl, a solvent which extracts porphyrin a. Thinlayer chromatography of the radioactivity found in 20% HCl showed an RF value identical to that of purified porphyrin a. When δ-amino[3H]levulinic acid-labeled, copper-deficient yeast cells are grown in copper-supplemented medium, the porphyrin a accumulated in copper-deficient cells wa converted into heme a, and this conversion was prevented by cycloheximidine.These observations suggest that porphyrin a is present in the apo-oxidase of copper-deficient cells, but that the conversion to heme a does not occur. This conversion reaction appears to be a point in the biosynthetic pathway of cytochrome c oxidase which is blocked by copper deficieny.  相似文献   
4.
5.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
6.
The natural compound Microcin C (McC) is a Trojan horse inhibitor of aspartyl tRNA synthetases endowed with strong antibacterial properties, in which a heptapeptide moiety is responsible for active transport of the inhibitory metabolite part into the bacterial cell. The intracellularly formed aspartyl AMP analogue carries a chemically more stable phosphoramidate linkage, in comparison to the labile aspartyl-adenylate, and in addition is esterified with a 3-aminopropyl moiety. Therefore, this compound can target aspartyl-tRNA synthetase. The biochemical production and secretion of McC, and the possibilities to develop new classes of antibiotics using the McC Trojan horse concept in combination with sulfamoylated adenosine analogues will be discussed briefly.  相似文献   
7.
In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.  相似文献   
8.
Abstract A screening procedure for highly thermostable yeast superoxide dismutase was developed. Growth yields at various temperatures were estimated for ten mesophilic and thermotolerant strains, belonging to the genera Saccharomyces, Kluyveromyces and Pichia . Higher yields at 45°C were obtained for K. lactis 90-3 and 90-4. A correlation between the ability to grow at higher temperature and the thermostability of the superoxide dismutase enzyme synthesized was observed. A comparison of the operational stability of the superoxide dismutase of all tested strains suggests that the enzyme of K. lactis strains was more thermostable than that of the other tested microorganisms.  相似文献   
9.
Three ultrasensitive protein silver-staining methods have been compared with respect to the detection of tRNA in polyacrylamide gels. The method of Sammons (D. W. Sammons, L.D. Adams, and E.E. Nishizawa (1981) Electrophoresis 2, 135-141) has been shown to have remarkable sensitivity, with a detection limit of 0.3 ng tRNA/mm2, allowing the two-dimensional fractionation of submicrogram amounts of bulk tRNA. The application of this technique to developmental and differentiation problems and other areas where the amounts of nonradioactive tRNA available are limited is anticipated.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号