首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  14篇
  2018年   1篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   3篇
  2005年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
1.
Direct selection of Kluyveromyces lactis resistant to the antibiotic G418 following transformation with the kanamycin resistance gene of Tn903 required the development of a procedure for producing high yields of viable spheroplasts and for the isolation of autonomous replication sequences (ARS). To obtain high yields of viable spheroplasts, cells were treated with (1) a thiol-reducing agent (L-cysteine), and (2) a high concentration of an osmotic stabilizer, 1.5 M sorbitol. Several ARS-containing plasmids were selected from a K. lactis recombinant DNA library in K. lactis and in Saccharomyces cerevisiae. Two of four ARS clones selected in K. lactis promoted transformation frequencies of 5-10 X 10(2) G418-resistant cells/micrograms of plasmid DNA. This frequency of transformation was at least twice as high as with ARS clones selected in S. cerevisiae. The stability of ARS-containing plasmids varied; after 20 generations of growth in the presence of G418, 16-38% of the cells remained resistant to the drug. In the absence of selection pressure less than 5% of the cells retained the drug-resistance phenotype. Plasmids containing the ARS1 or 2 mu replicon of S. cerevisiae failed to transform K. lactis for G418 resistance. Inclusion of S. cerevisiae centromere, CEN4, in a K. lactis ARS recombinant plasmid did not increase the stability of the plasmid in K. lactis, and marker genes on the vector segregated predominantly 4-:0+ through meiosis. We conclude that neither the ARS sequences or the centromere of S. cerevisiae was functioning in K. lactis.  相似文献   
2.
Lipases are widely used for a variety of biotechnological applications. Screening these industrial enzymes directly from environmental microorganisms is a more efficient and practical approach than conventional cultivation-dependent methods. Combined with activity-based functional screening, six clones with lipase activity were detected and a gene (termed lipZ01) isolated from a target clone with the highest lipase activity was cloned from an oil-contaminated soil-derived metagenomic library and then sequenced. Gene lipZ01 was expressed in Pichia pastoris GS115 and the molecular weight of the recombinant lipase LipZ01 was estimated by electrophoresis analysis to be approximately 50 kDa. The maximum activity of the purified lipase was 42 U/mL, and the optimum reaction temperature and pH value were 45 °C and 8.0, respectively. The enzyme was highly stable in the temperature range 35–60 °C and under alkaline conditions (pH 7–10). The presence of Ca2+ and Mn2+ ions could significantly enhance the activity of the lipase. The purified lipase preferentially hydrolysed triacylglycerols with acyl chain lengths ≥8 carbon atoms, and the conversion degree of biodiesel production was nearly 92% in a transesterification reaction using olive oil and methanol. Some attractive properties suggested that the recombinant lipase may be valuable in industrial applications.  相似文献   
3.
4.
Chemokines are small (8-12 kDa) effector proteins that potentiate leukocyte chemonavigation. Beyond this role, certain chemokines have direct antimicrobial activity against human pathogenic organisms; such molecules are termed kinocidins. The current investigation was designed to explore the structure-activity basis for direct microbicidal activity of kinocidins. Amino acid sequence and 3-dimensional analyses demonstrated these molecules to contain iterations of the conserved γ-core motif found in broad classes of classical antimicrobial peptides. Representative CXC, CC and C cysteine-motif-group kinocidins were tested for antimicrobial activity versus human pathogenic bacteria and fungi. Results demonstrate that these molecules exert direct antimicrobial activity in vitro, including antibacterial activity of native IL-8 and MCP-1, and microbicidal activity of native IL-8. To define molecular determinants governing its antimicrobial activities, the IL-8 γ-core (IL-8γ) and α-helical (IL-8α) motifs were compared to native IL-8 for antimicrobial efficacy in vitro. Microbicidal activity recapitulating that of native IL-8 localized to the autonomous IL-8α motif in vitro, and demonstrated durable microbicidal activity in human blood and blood matrices ex vivo. These results offer new insights into the modular architecture, context-related deployment and function, and evolution of host defense molecules containing γ-core motifs and microbicidal helices associated with antimicrobial activity.  相似文献   
5.
The INU1 gene (Accession number: JX073660) encoding exo-inulinase from Cryptococcus aureus HYA was cloned and characterized. The gene had an open reading frame (ORF) of 1653 bp long encoding an inulinase. The coding region of the gene was not interrupted by any intron. It encoded 551 amino acid residues of a protein with a putative signal peptide of 23 amino acids and the calculated molecular mass of 59.5 kDa. The protein sequence deduced from the inulinase structural gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP, FS and Q. It also had two conserved putative N-glycosylation sites. The inulinase from C. aureus HYA was found to be closely related to that from Kluyveromyces marxianus and Pichia guilliermondii. The inulinase gene without the signal sequence was subcloned into pPICZaA expression vector and expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum inulinase activity of 16.3 ± 0.24 U/ml was obtained from the culture supernatant of P. pastoris X-33 harboring the inulinase gene. The optimal temperature and pH for action of the enzyme were 50 °C and 5.0, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin with the purified recombinant inulinase.  相似文献   
6.
Prudent S  Marty F  Charbonnier M 《FEBS letters》2005,579(18):3872-3880
Osmoregulation plays an important role in cellular responses to osmotic stress in plants and in yeast. Aquaporins contribute to osmotic adjustment by facilitating transport of water or solutes across membranes. The tonoplastic water channel BobTIP1;1 (original name BobTIP26-1) genes are upregulated during dessication stress in cauliflower meristematic tissue. To investigate the physiological importance of BobTIP1;1, we expressed it in a Saccharomyces cerevisiae osmosensitive mutant fps1Delta. We showed that the defect in the yeast glycerol plasma membrane transporter is complemented by a plant cDNA encoding the aquaporin BobTIP1;1 which is localized in the vacuolar membrane of the complemented yeast cells. To our knowledge, this is the first example of a plant aquaporin for which localization in the vacuolar membrane of yeast cells is related to an osmoresistant phenotype under hypo-osmotic shock.  相似文献   
7.
8.
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by low levels of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulfur cluster defects and high sensitivity to oxidative stress. Frataxin deficiency is also associated with severe impairment of glutathione homeostasis and changes in glutathione-dependent antioxidant defenses. The potential biological consequences of oxidative stress and changes in glutathione levels associated with frataxin deficiency include the oxidation of susceptible protein thiols and reversible binding of glutathione to the SH of proteins by S-glutathionylation. In this study, we isolated mitochondria from frataxin-deficient ?yfh1 yeast cells and lymphoblasts of FRDA patients, and show evidence for a severe mitochondrial glutathione-dependent oxidative stress, with a low GSH/GSSG ratio, and thiol modifications of key mitochondrial enzymes. Both yeast and human frataxin-deficient cells had abnormally high levels of mitochondrial proteins binding an anti-glutathione antibody. Moreover, proteomics and immunodetection experiments provided evidence of thiol oxidation in α-ketoglutarate dehydrogenase (KGDH) or subunits of respiratory chain complexes III and IV. We also found dramatic changes in GSH/GSSG ratio and thiol modifications on aconitase and KGDH in the lymphoblasts of FRDA patients. Our data for yeast cells also confirm the existence of a signaling and/or regulatory process involving both iron and glutathione.  相似文献   
9.
Using a functional complementation strategy, we have isolated a Schistosoma mansoni cDNA that complemented Escherichia coli mutant strains which are defective in the DNA base excision repair pathway. This cDNA partially complemented the MMS-sensitive phenotype of these strains. The sequence of the isolated cDNA was homologous to genes involved in the RNA metabolism pathway, especially ScIMP4 of Saccharomyces cerevisiae. To establish whether the S. mansoni cDNA clone could complement yeast ScIMP4-defective mutants, we constructed a yeast haploid strain that coded for a truncated Imp4p protein. This mutant strain was treated with different DNA damaging agents, but showed only MMS sensitivity. The functional homology between the ScIMP4 gene and the cDNA from S. mansoni was verified by partial complementation of the mutant yeast with the worm's gene. This gene appears to be involved in DNA repair and RNA metabolism in both S. mansoni and S. cerevisiae.  相似文献   
10.
小孢拟盘多毛孢菌株NK17被证明能够产生多种具有药物开发价值的紫杉烷类似物以及冠心病治疗药物的前导物pestalotiollide B等次级代谢产物。由于是天然分离的菌株,该菌的营养要求未知,特别是缺少合适的全合成基础培养基,制约了实验室对其性状和基因水平的操作。尤其是在使用营养缺陷型菌株进行遗传转化时,全合成基础培养基是筛选工作的前提。对各种基础培养基进行筛选比较,最终确定酵母氮源加乳糖和硫酸铵的全合成基础培养基最适合NK17菌丝生长和营养缺陷型筛选。同时对该培养基的发酵产物进行了研究,成功应用该培养基进行了缺陷型回补筛选,效果较好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号