首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1236篇
  免费   51篇
  国内免费   81篇
  2023年   5篇
  2022年   14篇
  2021年   12篇
  2020年   21篇
  2019年   27篇
  2018年   19篇
  2017年   24篇
  2016年   24篇
  2015年   20篇
  2014年   69篇
  2013年   79篇
  2012年   44篇
  2011年   81篇
  2010年   64篇
  2009年   87篇
  2008年   86篇
  2007年   64篇
  2006年   68篇
  2005年   48篇
  2004年   67篇
  2003年   40篇
  2002年   34篇
  2001年   21篇
  2000年   22篇
  1999年   30篇
  1998年   33篇
  1997年   21篇
  1996年   16篇
  1995年   18篇
  1994年   23篇
  1993年   15篇
  1992年   21篇
  1991年   12篇
  1990年   8篇
  1989年   15篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   24篇
  1984年   5篇
  1983年   6篇
  1982年   10篇
  1981年   8篇
  1980年   9篇
  1979年   7篇
  1978年   8篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
排序方式: 共有1368条查询结果,搜索用时 31 毫秒
1.
The linkage of the Phi, Pgd, Po2, S, H and halothane sensitivity loci was followed in a Belgian Landrace family, heterozygous for these systems over 6 generations. Recombination next to the S locus occurred mainly in pigs belonging to this particular family. From this investigation the position of the S locus is proved to be outwith the Phi-Pgd region, next to Phi . Therefore the gene sequence S - Phi - Hal -H- Po2 -Pgd is proposed. Higher recombination rates were observed in the female parental line of the multiheterozygous family when compared to the male parental line. Additional data from animals, unrelated to this strain, confirm the evidence of close linkage of the S system to the nearest marker loci.  相似文献   
2.
Results from a large-scale study, comprising 75 different breeding herds, are reported on predicting the halothane ( Hal ) genotypes of individual pigs by making use of the known close linkage between Hal and three C blood marker loci ( Phi, Po2, Pgd ). The parents haplotypes (involving Hal and marker loci) were determined from the HAL phenotypes (halothane test results) and marker loci phenotypes of their offspring in the first one or two litters studied. In subsequent litters of the Hal -marker loci haplotyped parents, the offspring's expected Hal genotypes could be predicted on the basis of the marker loci haplotypes inherited by them. By comparing the expected and observed HAL phenotypes of offspring in subsequent litters, the predicted Hal genotype was found to be correct in 90–95 % of the 4000 offspring (from Nn × Nn and Nn × nn matings) of Swedish Landrace and Yorkshire breeds studied.
The order of the three marker loci was confirmed as Phi-Po2-Pgd but the position of Hal with regards to Phi could not be resolved. The recombination frequencies between the most distant loci in this region, viz. Hal-Pgd and Phi-Pgd , were estimated to be 3–4.5 % and 4–6 % , respectively. The easy and rapid electrophoretic techniques described in the study to phenotype PHI, PO2, PGD, also allowed phe-notyping of six other polymorphic protein systems on the same gels. Thus Hal genotyping and effective parentage control can be conducted simultaneously.  相似文献   
3.
Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.  相似文献   
4.
Bacillus sp. YX-1 glucose dehydrogenase (BsGDH) with good solvent resistance catalyzes the oxidation of β-d-glucose to d-glucono-1,5-lactone. Xylose is a recyclable resource from hemicellulase hydrolysis. In this work, to improve the preference of BsGDH for xylose, we designed seven mutants inside or adjacent to the substrate binding pocket using site-directed mutagenesis. Among all mutants, Ala258Phe mutant displayed the highest activity of 7.59 U mg−1 and nearly 8-folds higher kcat/Km value towards xylose than wild-type BsGDH. The kinetic constants indicated that the A258F mutation effectively altered the transition state. By analysis of modeled protein structure, Ala258Phe created a space to facilitate the reactivity towards xylose. A258F mutant retained good solvent resistance in glycol, ethyl caprylate, octane, decane, cyclohexane, nonane, etc. as with BsGDH. This work provides a protein engineering approach to modify the substrate stereo-preference of alcohol dehydrogenase and a promising enzyme for cofactor regeneration in chiral catalysis.  相似文献   
5.
Abstract: Prostaglandin H-E isomerase (EC 5.3.99.3) was purified from human brain cytosol. Purification was by ammonium sulfate fractionation, diethylaminoethyl-Sephar-ose chromatography, gel filtration on a BioGel P-100 column, GSH-agarose chromatography, and MonoQ chromatography. The activity was eluted in two peaks from the MonoQ column, which were designated peaks 1 and 2. The molecular weights of peaks 1 and 2, determined by gel filtration, were 42,000 and 44,000, respectively. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peak 1 showed two bands at the molecular weights of 24,500 and 25,000, and peak 2 showed a single band at the molecular weight of 25,000, results suggesting that both were dimeric proteins. The pI values of both enzymes were ∼5.4. The enzymes catalyzed selective conversion of prostaglandin H2 to prostaglandin E2. The K m values for prostaglandin H2 of peaks 1 and 2 were 147 and 308 μ M , respectively, and the V max values were 380 and 720 nmol/min/mg of protein, respectively. GSH was required for the catalysis of both enzymes, and no other sulfhydryl compounds could support the reaction. A part of glutathione S -transferase (EC 2.5.1.18) was copurified with peaks 1 and 2 of prostaglandin H-E isomerase. Prostaglandin H-E isomerase activity of peak 2 enzyme was competitively inhibited by 1-chloro-2,4-dinitrobenzene, a substrate of glutathione S -transferase. These results suggested that prostaglandin H-E isomerases in human brain cytosol were identical with anionic forms of glutathione S -transferase.  相似文献   
6.
Inhibition of phosphoglucose isomerase (PGI) allozymes from the wing-polymorphic waterstrider, Limnoporus canaliculatus, by three pentose-shunt metabolites was studied at several different temperatures. This was done to determine if the allozymes exhibited a differential ability to participate in lipid biosynthesis via differential partitioning of carbon flux through the pentose shunt versus glycolysis. 6-Phosphogluconate and erythrose-4-phosphate proved to be strong competitive inhibitors of PGI, while sedoheptulose-7-phosphate was a very weak inhibitor. The PGI allozymes from L. canalicualtus were differentially inhibited by 6-phosphogluconate at two of the three temperatures studied. However, this property does not appear to be an adaptive difference between the allozymes but, rather, a correlated effect resulting from variation in substrate binding. Estimates of reaction rates for the allozymes indicate that the differences in inhibition result in no detectable differences in reaction velocities. Thus, no evidence in support of the hypothesis that PGI allozymes from Limnoporus canaliculatus were adapted to function in different metabolic capacities via differential inhibition was obtained in this study. However, the importance of this characteristic in allozymic adaptation in natural populations remains an open question.Supported by NSF Grant DEB 7908802 and UPHS Grant GM 21133 to R. K. Koehn and an NSF dissertation improvement grant to A. J. Zera.  相似文献   
7.
Four samples of the musselMytilus edulis were taken between 1984 and 1987 from Stony Brook, New York, and used to study the glucose-6-phosphate isomerase (GPI) polymorphism in this species.In vitro specific activity andin vivo flux measured in the same animals were found to be significantly correlated. A significant effect of GPI genotype on flux was observed in one of the samples; overall, significant evidence of effect of genotype on enzyme activity was also obtained. GPI activities of common genotypes tend to deviate less from the population mean than those of rare (frequency less than 5%) genotypes. This suggests the possibility that rare GPI genotypes are rare as a consequence of having biochemical properties that deviate from an optimum level and, therefore, having a lower fitness. In support of this hypothesis, we found in one of our samples that shell length is a concave function of GPI activity with an intermediate optimum activity level. The financial support provided to P.J.N.S. by the Luso-American Educational Commission (Fulbright Program), the Instituto Nacional de Investigacao Científica (Portugal), and the Faculdade de Ciências da Universidade de Lisboa during several stages of this research is gratefully acknowledged. Financial support from the Ministerio de Educatión y Ciencia (Spain) in the form of a postdoctoral Fulbright/MEC fellowship to M.S. is also gratefully acknowledged. Research was supported by National Science Foundation Grant BSR-8415060 to R.K.K. This is contribution No. 736 from the Program in Ecology and Evolution, State University of New York at Stony Brook. On leave from Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande C2, Lisboa, Portugal.  相似文献   
8.
The fermentation of xylose by Thermoanaerobacter ethanolicus ATCC 31938 was studied in pH-controlled batch and continuous cultures. In batch culture, a dependency of growth rate, product yield, and product distribution upon xylose concentration was observed. With 27 mM xylose media, an ethanol yield of 1.3 mol ethanol/mol xylose (78% of maximum theoretical yield) was typically obtained. With the same media, xylose-limited growth in continuous culture could be achieved with a volumetric productivity of 0.50 g ethanol/liter h and a yield of 0.42 g ethanol/g xylose (1.37 mol ethanol/mol xylose). With extended operation of the chemostat, variation in xylose uptake and a decline in ethanol yield was seen. Instability with respect to fermentation performance was attributed to a selection for mutant populations with different metabolic characteristics. Ethanol production in these T. ethanolicus systems was compared with xylose-to-ethanol conversions of other organisms. Relative to the other systems, T. ethanolicus offers the advantages of a high ethanol yield at low xylose concentrations in batch culture and of a rapid growth rate. Its disadvantages include a lower ethanol yield at higher xylose concentrations in batch culture and an instability of fermentation characteristics in continuous culture.  相似文献   
9.
The mechanism of formation of quinone methide from the sclerotizing precursor N-acetyldopamine (NADA) was studied using three different cuticular enzyme systems viz. Sarcophaga bullata larval cuticle, Manduca sexta pharate pupae, and Periplaneta americana presclerotized adult cuticle. All three cuticular samples readily oxidized NADA. During the enzyme-catalyzed oxidation, the majority of NADA oxidized became bound covalently to the cuticle through the side chain with the retention of o-diphenolic function, while a minor amount was recovered as N-acetylnorepinephrine (NANE). Cuticle treated with NADA readily released 2-hydroxy-3′,4′-dihydroxyacetophenone on mild acid hydrolysis confirming the operation of quinone methide sclerotization. Attempts to demonstrate the direct formation of NADA-quinone methide by trapping experiments with N-acetylcysteine surprisingly yielded NADA-quinone-N-acetylcysteine adduct rather than the expected NADA-quinone methide-N-acetylcysteine adduct. These results are indicative of NADA oxidation to NADA-quinone and its subsequent isomerization to NADA-quinone methide. Accordingly, all three cuticular samples exhibited the presence of an isomerase, which catalyzed the conversion of NADA-quinone to NADA-quinone methide as evidenced by the formation of NANE—the water adduct of quinone methide. Thus, in association with phenoloxidase, newly discovered quinone methide isomerase seems to generate quinone methides and provide them for quinone methide sclerotization.  相似文献   
10.
Prolyl 4-hydroxylase, a key enzyme in collagen biosynthesis, catalyzes the conversion of selected prolyl residues to trans-hydroxyproline in nascent or completed pro-alpha chains of procollagen. The enzyme is a tetramer composed of two nonidentical subunits, designated alpha and beta. To compare the enzyme and its subunits from different sources, the chick embryo and human placental prolyl 4-hydroxylases were purified to homogeneity and their physicochemical and immunological properties were determined. Both enzymes were glycoproteins with estimated apparent molecular weights ranging between 400 and 600 kDa. Amino acid and carbohydrate analyses showed slight differences between the two holomeric enzymes, consistent with their deduced amino acid sequences from their respective cDNAs. Human placental prolyl 4-hydroxylase contained more tightly bound iron than the chick embryo enzyme. Immunodiffusion of the human placental enzyme with antibodies raised against the purified chick embryo prolyl 4-hydroxylase demonstrated partial identity, indicating different antigenic determinants in their tertiary structures. The enzymes could be separated by high-resolution capillary electrophoresis, indicating differential charge densities for the native chick embryo and human placental proteins. Electrophoretic studies revealed that the human prolyl 4-hydroxylase is a tetrameric enzyme containing two nonidentical subunits of about 64 and 62 kDa, in a ratio of approximately 1 to 2, designated alpha and beta, respectively. In contrast, the chick embryo alpha and beta subunit ratio was 1 to 1. Notably, the human alpha subunit was partially degraded when subjected to electrophoresis under denaturing conditions. Analogously, when the chick embryo enzyme was subjected to limited proteolysis, selective degradation of the alpha subunit was observed. Finally, only the alpha subunit was bound to Concanavalin A demonstrating that the alpha subunits of prolyl 4-hydroxylase in both species were glycosylated. Using biochemical techniques, these results demonstrated that the 4-trans-hydroxy-L-proline residues in human placental collagens are synthesized by an enzyme whose primary structure and immunological properties differ from those of the previously well-characterized chick embryo enzyme, consistent with their recently deduced primary structures from cDNA sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号