首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  6篇
  2022年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2003年   1篇
  1993年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   
2.
Bacterial transporters are difficult to study using conventional electrophysiology because of their low transport rates and the small size of bacterial cells. Here, we applied solid-supported membrane–based electrophysiology to derive kinetic parameters of sugar translocation by the Escherichia coli xylose permease (XylE), including functionally relevant mutants. Many aspects of the fucose permease (FucP) and lactose permease (LacY) have also been investigated, which allow for more comprehensive conclusions regarding the mechanism of sugar translocation by transporters of the major facilitator superfamily. In all three of these symporters, we observed sugar binding and transport in real time to determine KM, Vmax, KD, and kobs values for different sugar substrates. KD and kobs values were attainable because of a conserved sugar-induced electrogenic conformational transition within these transporters. We also analyzed interactions between the residues in the available X-ray sugar/H+ symporter structures obtained with different bound sugars. We found that different sugars induce different conformational states, possibly correlating with different charge displacements in the electrophysiological assay upon sugar binding. Finally, we found that mutations in XylE altered the kinetics of glucose binding and transport, as Q175 and L297 are necessary for uncoupling H+ and d-glucose translocation. Based on the rates for the electrogenic conformational transition upon sugar binding (>300 s−1) and for sugar translocation (2 s−1 − 30 s−1 for different substrates), we propose a multiple-step mechanism and postulate an energy profile for sugar translocation. We also suggest a mechanism by which d-glucose can act as an inhibitor for XylE.  相似文献   
3.
The Δ‐distance maps can detect local remodeling that is difficult to accurately determine using superimpositions. Transmembrane segments (TMSs) 11 in both LacY and XylE of the major facilitator superfamily uniquely contribute the greatest amount of mobile surface area in the outward‐occluded state and undergo analogous movements. The intracellular part of TMS11 moves away from the C‐terminal domain and into the substrate cavity during the conformational change from the outward‐occluded to the inward‐occluded state. A difference was noted between LacY and XylE when they assumed the inward open state after releasing a substrate to the inside in which TMS11 of LacY moved further into the substrate release space, whereas in XylE, TMS11 slightly retracted into the C‐terminal domain. Independent movement of the N‐terminal half of TMS11 suggests that it is flexible in the middle. Repeat‐swapped homology modeling was used to discover that a loop connecting TMSs 10 and 11 in LacY probably moves during the transition between the unavailable outward‐open state and the outward‐occluded state. TMSs 11 and the other elements displaying a notable domain‐independent movement colocalize with the interdomain linker, suggesting that these elements could drive the alternating access movement between the domain halves. Preliminary evidence indicates that analogous movements occur in other members of the major facilitator superfamily. Proteins 2015; 83:735–745. © 2015 Wiley Periodicals, Inc.  相似文献   
4.
A microbial screening indicated that two fungal strains, Beauveria bassiana DSM 1344=ATCC 7159 and Cunninghamella elegans DSM 1908=ATCC 9245, as well as four bacterial strains belonging to the genus Streptomyces were able to hydroxylate 4,5-dianilinophthalimide (DAPH, CGP52411) to 4-(4′-hydroxyanilino)-5-anilinophthalimide. Cunninghamella elegans DSM 1908 turned out to be the most active biocatalyst and was also able to form the dihydroxy derivative, 4,5-bis(4′-hydroxyanilino)phthalimide. The reaction for the monohydroxylated biotransformation product was carried out on a preparative scale, and the culture conditions for the formation of 4-(4′-hydroxy- anilino)-5-anilinophthalimide with this strain were op-timized.  相似文献   
5.
肾综合征出血热病毒基因部份酶切片段的亚克隆   总被引:1,自引:0,他引:1  
在用微机对肾综合征出血热病毒76/118株(即汉坦病毒)S与M基因片段进行系统分析的基础上,分别利用质粒pXZ62和pUC18亚克隆了S与M基因中的部份酶争片段,以便为亚克隆基因探针的应用和基因改造与多途径表达奠定基础。同时亦进一步证实了Xy1E基因-邻苯二酚2,3-双加氧酶(CqtO2ase)这一显色标记系统在基因工程中的实用价值。  相似文献   
6.
Using an expression vector containing p(mxaF'), a strong native promoter, expression of a model heterologous protein, haloalkane dehalogenase, from Xanthobacter autotrophicus GJ10 was achieved in the methylotrophic bacterium, Methylobacterium extorquens AM1. Although expression using the wild-type strain was <5% of total cell protein, expression at a level of 10% of the total cell protein was achieved in a mutant unable to synthesize poly-beta-hydroxybutyrate granules. Two other tested heterologous proteins, catechol dioxygenase and green fluorescent protein, were expressed at moderate levels in both wild-type and the PHB-negative strain. These results suggest that the M. extorquens PHB-negative strain is a possible platform for overexpression of heterologous proteins with labeled or unlabeled methanol as a starting material.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号