首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2015年   2篇
  2012年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
β-地中海贫血患者因无合适的造血干细胞供体来源从而不得不靠输血维持生命。诱导多能干细胞(iPS)技术为获得患者自身遗传背景的干细胞进行临床治疗开拓了新途径。目前,建立iPS细胞系的过程需要使用小鼠胚胎成纤维细胞作为饲养层和动物源的蛋白成分,因此建立的iPS细胞系存在病原体和动物源蛋白污染的可能性,不能应用于临床。采用目前商品化的TeSRTM2和StemAdhereTMDefined Matrix限定培养体系,利用Oct4、Sox2、Klf4、c-Myc 4个转录因子组装在同一表达载体的可切除的慢病毒感染人β-地中海贫血成纤维细胞,建立了5株无饲养层和动物源蛋白的β-地中海贫血iPS细胞系,这些iPS细胞系具有人胚胎干细胞典型的特征,表达人胚胎干细胞的多能性分子标记,如Oct4、Nanog、Tra-1-60等。在体外分化能够形成拟胚体,在体内分化能够形成含有3个胚层类型细胞的畸胎瘤。  相似文献   
2.
Although stem cells are promising candidates for cell replacement therapies, the vast majority are derived using animal sera, which has risk of being contaminated by animal viruses or toxins. To overcome these potential problems, we initially established multiple lines of stem cells from first-trimester human placenta (fPMSC), which were cultivated using human follicular fluid (hFF) instead of fetal bovine serum (FBS). FF provides a very important microenvironment for the development of oocytes. No differences were found in the general morphology, growth rate, karyotype, gene and surface expressions between placental MSCs cultured in 5 % hFF-supplemented medium (fPMSC-X) or 10 % FBS-supplemented medium (fPMSC). Differentiation experiments confirmed similar levels of potency in cells grown in either condition. Since hFF preserved the unique features of the stem cells and is free from potential pathogens, it should be considered as the main culture medium supplement for the propagation of human stem cells for clinical applications.  相似文献   
3.
Current cell-based cartilage therapies relay on articular cartilage-derived autologous chondrocytes as a cell source, which possesses disadvantages, such as, donor site morbidity and dedifferentiation of chondrocytes during in vitro expansion. Due to these and other limitations, novel cell sources and production strategies are needed. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are a fascinating alternative, but they are not spontaneously capable of producing hyaline cartilage-like repair tissue in vivo. In vitro pre-differentiation of BM-MSCs could be used to produce chondrocytes for clinical applications. However, clinically compatible defined and xeno-free differentiation protocol is lacking. Hence, this study aimed to develop such chondrogenic differentiation medium for human BM-MSCs. We assessed the feasibility of the medium using three human BM-MSCs donors and validated the method by comparing BM-MSCs to three other cell types holding potential for articular cartilage repair. The effectiveness of the method was compared to conventional serum-free and commercially available chondrogenic differentiation media. The results show that the defined xeno-free differentiation medium is at least as efficient as conventionally used serum-free chondrogenic medium and performed significantly better on all cell types tested compared to the commercially available chondrogenic medium.  相似文献   
4.
The proliferation of human bone marrow mesenchymal stem cells (MSCs) employing xeno-free materials not containing fetal calf serum (FCS) and porcine trypsin was investigated for the regenerative medicine of cartilage using MSCs. Four sequential subcultivations of MSCs using a medium containing 10% FCS and recombinant trypsin (TrypLESelect™) resulted in cell growth comparable to that with porcine trypsin. There was no apparent difference in the cell growth and morphology between two kinds of MSC stored in liquid nitrogen using 10% FCS plus DMSO or serum-free TC protector™. MSCs were isolated from human bone marrow cells, stored in liquid nitrogen, and sequentially subcultivated four times employing conventional materials that included FCS, porcine trypsin, and DMSO, or xeno-free materials that included serum-free medium (MesenCult-XF™), TC protector™ and TrypLESelect™. Cells in the culture using the xeno-free materials maintained typical fibroblast-like morphology and grew more rapidly than the cells in the culture using the conventional materials, while the cell surface markers of MSCs (CD90 and CD166) were well maintained in both cultures. Chondrogenic pellet cultures were carried out using these subcultivated cells and a medium containing TGFβ3 and IGF1. The pellet culture using cells grown with the xeno-free materials showed an apparently higher gene expression of aggrecan, a chondrocyte marker, than the pellet culture using cells grown with the conventional materials. Consequently, MSCs that are isolated, stored, and grown using the xeno-free materials including the serum-free medium (MesenCult-XF™), TC protector™, and recombinant trypsin (TrypLESelect™) might be applicable for regenerative medicine of cartilage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号