首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   1篇
  国内免费   5篇
  2020年   4篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   7篇
  2006年   5篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1980年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
1.
Recent advances in the fields of chromatography, mass spectrometry, and chemical analysis have greatly improved the efficiency with which carotenoids can be extracted and analyzed from avian plumage. Prior to these technological developments, Brush (1968) [1] concluded that the burgundy-colored plumage of the male pompadour Cotinga Xipholena punicea is produced by a combination of blue structural color and red carotenoids, including astaxanthin, canthaxanthin, isozeaxanthin, and a fourth unidentified, polar carotenoid. However, X. punicea does not in fact exhibit any structural coloration. This work aims to elucidate the carotenoid pigments of the burgundy color of X. punicea plumage using advanced analytical methodology. Feathers were collected from two burgundy male specimens and from a third aberrant orange-colored specimen. Pigments were extracted using a previously published technique (McGraw et al. (2005) [2]), separated by high-performance liquid chromatography (HPLC), and analyzed by UV/Vis absorption spectroscopy, chemical analysis, mass spectrometry, nuclear magnetic resonance (NMR), and comparison with direct synthetic products. Our investigation revealed the presence of eight ketocarotenoids, including astaxanthin and canthaxanthin as reported previously by Brush (1968) [1]. Six of the ketocarotenoids contained methoxyl groups, which is rare for naturally-occurring carotenoids and a novel finding in birds. Interestingly, the carotenoid composition was the same in both the burgundy and orange feathers, indicating that feather coloration in X. punicea is determined not only by the presence of carotenoids, but also by interactions between the bound carotenoid pigments and their protein environment in the barb rami and barbules. This paper presents the first evidence of metabolically-derived methoxy-carotenoids in birds.  相似文献   
2.
Dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidation and zeaxanthin formation in chloroplasts, inhibited blue-light-stimulated stomatal opening in epidermal peels of Vicia faba L. in a concentration-dependent fashion. Complete inhibition was observed at 3 mM DTT. The DTT effect was specific for the stomatal response to blue light, and the red-light-stimulated opening, which depends on photosynthetic reactions in the guard cells, was unaffected. Preirradiation of stomata in epidermal peels with increasing photon fluence rates of red light, prior to an incubation in 10 mol·m-2·s-1 of blue light and 100 mol·m-2·s-1 red light, resulted in a DTT-sensitive, blue-light-stimulated opening that was proportional to the fluence rate of the red light pre-treatment. Guard cells in epidermal peels and guard-cell protoplasts irradiated with red light showed increases in their zeaxanthin content that depended on the fluence rate of red light, or on the incubation time. The increases in zeaxanthin concentration were inhibited by DTT. The obtained results indicate that zeaxanthin could function as a photoreceptor mediating the stomatal responses to blue light.Abbreviation DTT dithiothreitol This work was supported by grants from the National Science Foundation and the US Department of Energy to E.Z.  相似文献   
3.
利用叶绿素荧光技术,对强光胁迫下以及叶黄素循环抑制剂-二硫苏糖醇(DTT)和D1蛋白合成抑制剂-硫酸链霉素(SM)处理后毛竹(Phyllostachys edulis (Carr.) Lehaie)的光抑制特征进行研究。结果显示:在夏季中午强光或人为强光胁迫下,毛竹叶片最大光化学效率Fv/Fm均显著降低;在下午光强减弱或黑暗、弱光条件下,Fv/Fm可有效恢复。DTT和SM均可抑制毛竹叶片非光化学淬灭(NPQ),且DTT效果明显优于SM。另外,在强光下,DTT和SM处理均能使毛竹叶片Fv/Fm、实际光化学效率Y(Ⅱ)和光化学淬灭qP等荧光参数下降幅度增大。研究结果表明毛竹叶片具有完善的光破坏防御机制,NPQ与叶黄素循环和D1蛋白周转紧密关联,在叶片光保护机制中具有重要作用。  相似文献   
4.
Leipner J  Stamp P  Fracheboud Y 《Planta》2000,210(6):964-969
Infiltrating detached maize (Zeamays L.) leaves with L-galactono-1,4-lactone (L-GAL) resulted in a 4-fold increase in the content of leaf ascorbate. Upon exposure to high irradiance (1000 μmol photons m−2 s−1) at 5 °C, L-GAL leaves de-epoxidized the xanthophyll-cycle pigments faster than the control leaves; the maximal ratio of de-epoxidized xanthophyll-cycle pigments to the whole xanthophyll-cycle pool was the same in both leaf types. The elevated ascorbate content, together with the faster violaxanthin de-epoxidation, did not affect the degree of photoinhibition and the kinetics of the recovery from photoinhibition, assayed by monitoring the maximum quantum efficiency of photosystem II primary photochemistry (Fv/Fm). Under the experimental conditions, the thermal energy dissipation seems to be zeaxanthin-independent since, in contrast to the de-epoxidation, the decrease in the efficiency of excitation-energy capture by open photosystem II reaction centers (Fv′/Fm′) during the high-irradiance treatment at low temperature showed the same kinetic in both leaf types. This was also observed for the recovery of the maximal fluorescence after stress. Furthermore, the elevated ascorbate content did not diminish the degradation of pigments or α-tocopherol when leaves were exposed for up to 24 h to high irradiance at low temperature. Moreover, a higher content of ascorbate appeared to increase the requirement for reduced glutathione. Received: 20 May 1999 / Accepted: 29 October 1999  相似文献   
5.
Munné-Bosch S  Alegre L 《Planta》2000,210(6):925-931
Two-year-old rosemary (Rosmarinus officinalis L.) plants were subjected to severe stress by exposure to prolonged drought during a Mediterranean summer. Severely stressed plants recovered completely after the autumn rainfalls although the relative water content remained below 35% for 3 months and the chlorophyll content of leaves was reduced by up to 85% during the drought. In severe stress: (i) α-tocopherol increased 9-fold per g dry weight and 20-fold per unit of chlorophyll; (ii) lutein and β-carotene contents decreased on a dry-weight basis, but an 80% increase in lutein and constant levels of β-carotene were observed on a chlorophyll basis; (iii) there were transient and sustained increases in the de-epoxidation state of the xanthophyll cycle; and (iv) the highly oxidised abietane diterpene isorosmanol increased 8-fold as a result of the oxidation of carnosic acid. With the autumn rainfalls, water status, α-tocopherol and violaxanthin recovered first and the levels of photosynthetic pigments and abietane diterpenes increased later. The photoprotection conferred by the xanthophyll cycle and the antioxidant function of tocopherols, lutein and diterpenes may help to avoid irreversible damage in severe drought, making possible the recovery of functional membranes after the autumn rainfalls. Besides, chlorophyll loss reduces the amount of photons absorbed by leaves, which enhances the photoprotective and antioxidant capacity of leaves per amount of photons absorbed, since the ratios of xanthophylls, α-tocopherol and abietane diterpenes to chlorophyll increase. Received: 12 July 1999 / Accepted: 25 November 1999  相似文献   
6.
The effects of iron limitation on photoacclimation to a dynamic light regime were studied in Phaeocystis antarctica. Batch cultures were grown under a sinusoidal light regime, mimicking vertical mixing, under both iron-sufficient and -limiting conditions. Iron-replete cells responded to changes in light intensity by rapid xanthophyll cycling. Maximum irradiance coincided with maximum ratios of diatoxanthin/diadinoxanthin (dt/dd). The maximum quantum yield of photosynthesis (F v /F m ) was negatively related to both irradiance and dt/dd. Full recovery of F v /F m by the end of the light period suggested successful photoacclimation. Iron-limited cells displayed characteristics of high light acclimation. The ratio of xanthophyll pigments to chlorophyll a was three times higher compared to iron-replete cells. Down-regulation of photosynthetic activity was moderated. It is argued that under iron limitation cells maintain a permanent state of high energy quenching to avoid photoinhibition during exposure to high irradiance. Iron-limited cells could maintain a high growth potential due to an increased absorption capacity as recorded by in vivo absorption, which balanced a decrease in F v /F m . The increase in the chlorophyll a-specific absorption cross section was related to an increase in carotenoid pigments and a reduction in the package effect. These experiments show that P. antarctica can acclimate successfully to conditions as they prevail in the Antarctic ocean, which may explain the success of this species.  相似文献   
7.
Chlorella is a promising alternative resource of lutein (xanthophyll) production as it can be cultivated heterotrophically in fermentors. In this paper, a kinetic model for lutein production by heterotrophic Chlorella pyrenoidosa was developed based on batch cultivations in 250-ml flasks and a 19-l fermentor. The model was validated by experimental data from two fed-batch cultivations performed in the same fermentor. The dynamic behavior of lutein production by C. pyrenoidosa with various concentrations of glucose and nitrogen was analyzed based on the kinetic model. Model-based analyses suggested that glucose concentrations between 5 and 24 g/l and nitrogen concentrations between 0.7 and 12 g/l during the cultivation were favorable for lutein production by heterotrophic C. pyrenoidosa. It also showed that fed-batch cultivations are more suitable for efficient production of lutein than batch ones. The results obtained in this study may contribute to commercial lutein production by heterotrophic Chlorella.  相似文献   
8.
The Rice varieties Araure 4 (A4) and Fonaiap 2000 (F2000) were grown in the glasshouse under natural sunlight and subjected to drought at heading. The drought induced changes in chlorophyll a fluorescence parameters, pigment composition, D1 contents and carbohydrate accumulation were investigated. Drought decreased phiPS II, FV'/FM' and qP, and increased qN in both varieties. F2000 had larger values of phiPS II and FV'/FM' at a lower RWC than A4. With the onset of drought only A4 increased the xanthophyll cycle pool, F2000 remaining constant throughout the drought cycle. Irrigated plants of A4 had a Larger de-epoxidation state (DEPS) of the xanthophyll cycle than F2000. A 40% increase in DEPS was induced by drought in both varieties but in A4 it was attained at a larger RWC than in F2000. Drought increased glucose and fructose contents of leaves 8-fold in A4 and 3-fold in F2000. Contrarily, sucrose contents decreased with drought but the effects were larger in A4 than in F2000. Sugars accumulation preceded and was proportional to the decrease in PS II activity elicited by drought in both varieties. In F2000 a decrease in D1 content smaller than 20% occurred at 70% of RWC, whereas droughted plants of A4 had lost 80% of D1 protein at 77% of RWC. Our data show that drought severely affected PS II activity and its main regulatory mechanisms in rice. There are genotypic differences in the response of PS II activity to drought that could be exploited as traits for selection to drought tolerance. There is a possible link between the drought-induced sugars accumulation in the flag leaf and the response of PS II to water deficit.  相似文献   
9.
Photoinhibition and pigment composition of green stem tissues of field-grown adult Eucalyptus nitens were measured on clear spring days with low morning temperatures—conditions that cause photoinhibition in leaves of many plant species. The sun-exposed (north-facing) bark contained less chlorophyll a+b (531 vs 748 mol m–2), neoxanthin (29 vs 41), and -carotene (54 vs 73), more xanthophyll cycle pigments per unit surface area and per unit chlorophyll (71 vs 53 mol m–2 and 141 vs 66 mmol mol–1 chlorophyll), and less lutein per unit chlorophyll (239 vs 190) than the shaded (southern) side. Maximum electron flow rates were 60 mol m–2 s–1 on the sun-exposed side, and about 10 mol m–2 s–1 on the shaded side. Fv/Fm was always lower than 0.8 on the sun-exposed side and the de-epoxidation state (DEPS) of the xanthophyll cycle was dominated by zeaxanthin in midday samples. Fv/Fm increased quickly after darkening, but DEPS recovered more slowly to 40% overnight. This suggested that rapidly reversible pH-dependent quenching was responsible for the bulk of changes in PS II efficiency. Fv/Fm remained below 0.8 overnight, which may well be indicative of photo-damage to PSII. In contrast, DEPS of the shaded side was lower, and Fv/Fm was higher, than for the sun-exposed side. We conclude that E. nitens chlorenchyma on the sun-exposed stem side has a photosynthetic pigment composition similar to sun leaves and it experiences significant photoinhibition in the field.  相似文献   
10.
The effects of the 9-cis and 13-cis isomers of zeaxanthin on the molecular organization and dynamics of dimyristoylphosphatidylcholine (DMPC) membranes were investigated using conventional and saturation recovery EPR observations of the 1-palmitoyl-2-(14-doxylstearoyl)phosphatidylcholine (14-PC) spin label. The results were compared with the effects caused by the all-trans isomer of zeaxanthin. Effects on membrane fluidity, order, hydrophobicity, and the oxygen transport parameter were monitored at the center of the fluid phase DMPC membrane. The local diffusion-solubility product of oxygen molecules (oxygen transport parameter) in the membrane center, studied by saturation-recovery EPR, decreased by 47% and 27% by including 10 mol% 13-cis and 9-cis zeaxanthin, respectively; whereas, incorporation of all-trans zeaxanthin decreased this parameter by only 11%. At a zeaxanthin-to-DMPC mole ratio of 1:9, all investigated isomers decreased the membrane fluidity and increased the alkyl chain order in the membrane center. They also increased the hydrophobicity of the membrane interior. The effects of these isomers of zeaxanthin on the membrane properties mentioned above increase as: all-trans < 9-cis ≤ 13-cis. Obtained results suggest that the investigated cis-isomers of zeaxanthin, similar to the all-trans isomer, are located in the membrane interior, adopting transmembrane orientation with the polar terminal hydroxyl groups located in the opposite leaflets of the bilayer. However, the existence of the second pool of cis-zeaxanthin molecules located in the one leaflet and anchored by the terminal hydroxyl groups in the same polar headgroup region cannot be completely ruled out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号