首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2200篇
  免费   100篇
  国内免费   179篇
  2024年   2篇
  2023年   29篇
  2022年   37篇
  2021年   30篇
  2020年   27篇
  2019年   26篇
  2018年   40篇
  2017年   85篇
  2016年   72篇
  2015年   62篇
  2014年   86篇
  2013年   71篇
  2012年   47篇
  2011年   86篇
  2010年   65篇
  2009年   214篇
  2008年   240篇
  2007年   208篇
  2006年   185篇
  2005年   132篇
  2004年   114篇
  2003年   81篇
  2002年   57篇
  2001年   22篇
  2000年   45篇
  1999年   34篇
  1998年   35篇
  1997年   31篇
  1996年   31篇
  1995年   20篇
  1994年   21篇
  1993年   28篇
  1992年   26篇
  1991年   20篇
  1990年   20篇
  1989年   18篇
  1988年   31篇
  1987年   26篇
  1986年   10篇
  1985年   12篇
  1984年   10篇
  1983年   5篇
  1982年   6篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   7篇
  1974年   2篇
  1973年   2篇
  1963年   1篇
排序方式: 共有2479条查询结果,搜索用时 281 毫秒
1.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
2.
There is a major risk that many of the remaining semi-natural pastures in Swedish forest dominated regions will lose their grazing in the near future with lost biodiversity as a result. The reason is the high costs of grazing small pastures with cattle from generally small herds. The approaching decoupling of the present EU income support per head of cattle will increase the risk. Calculations based on economies of scale in beef production and opportunity cost of forest and arable land suggest that re-creating extensive pasture-forest mosaics consisting of existing semi-natural pastures and adjacent arable fields and forests can secure economically sustainable grazing. The risk of local extinction of grassland species due to habitat isolation is also lower in large mosaics than in small, scattered pastures.  相似文献   
3.
The distribution patterns of the leathery sea anemone, Heteractis crispa, which contains an algal endosymbiont (zooxanthellae) and anemonefish, were investigated in relation to size distribution on a shallow fringing reef (3.2 ha, 0–4 m depth) in Okinawa, Japan. Individual growth and movements were also examined. Large individuals (>1,000 cm2) inhabited reef edges up to a depth of 4 m, while small anemone (<500 cm2) inhabited shallow reefs including inner reef flats. Individuals rarely moved, and their sizes were significantly correlated with their water depths. Growth of small anemones was negatively correlated with their distance from the reef edge, suggesting that reef edges provide more prey and lower levels of physiological stress. This study suggested that deep reef edges are suitable habitats for H. crispa. Large anemones were inhabited by large Amphiprion perideraion or large Amphiprion clarkii, both of which are effective defenders against anemone predators. Anemones that settle in deep reef edges may enjoy a higher survival rate and attain a large size because of their symbiotic relationship with anemonefish. However, early settlers do not harbor anemonefish. Their mortality rate would be higher in the deep edges than in shallow edges, the complicated topography of which provides refuge.  相似文献   
4.
Shallow-water vegetated estuarine habitats, notably seagrass, mangrove and saltmarsh, are known to be important habitats for many species of small or juvenile fish in temperate Australia. However, the movement of fish between these habitats is poorly understood, and yet critical to the management of the estuarine fisheries resource. We installed a series of buoyant pop nets in adjacent stands of seagrass, mangrove and saltmarsh in order to determine how relative abundance of fishes varied through lunar cycles. Nets were released in all habitats at the peak of the monthly spring tide for 12 months, and in the seagrass habitat at the peak of the neap tide also. The assemblage of fish in each habitat differed during the spring tides. The seagrass assemblage differed between spring and neap tide, with the neap tide assemblage showing greater abundances of fish, particularly those species which visited the adjacent habitats when inundated during spring tides. The result supports the hypothesis that fish move from the seagrass to the adjacent mangrove and saltmarsh during spring tides, taking advantage of high abundances of zooplankton, and use seagrass as a refuge during lower tides. The restoration and preservation of mangrove and saltmarsh utility as fish habitat may in some situations be linked to the proximity of available seagrass.  相似文献   
5.
6.
ABSTRACT

With countless “natural” experiments triggered by the COVID-19-associated physical distancing, one key question comes from chronobiology: “When confined to homes, how does the reduced exposure to natural daylight arising from the interruption of usual outdoor activities plus lost temporal organization ordinarily provided from workplaces and schools affect the circadian timing system (the internal 24 h clock) and, consequently, health of children and adults of all ages?” Herein, we discuss some ethical and scientific facets of exploring such natural experiments by offering a hypothetical case study of circadian biology.  相似文献   
7.
A field experiment encompassing both neighbour- and nutrient-manipulations was conducted in a nutrient-impoverished old-field habitat to investigate how the intensity of plant competition was affected by soil nutrient level. Three perennial grasses were used as target species: Agropyron repens, Poa pratensis and Phleum pratense. Neighbour manipulations involved the removal (through herbicide application) of all neighbouring vegetation within a 20 cm or 40 cm radius around target plants. Target performance was measured under five levels of added nutrients (N-P-K) in both the neighbour-removal plots and in non-removal (control) plots. Both neighbour and nutrient manipulations had a highly significant effect on both biomass and tiller production but the interaction between these treatments was generally insignificant. Below-ground/above-ground biomass quotient was affected only by neighbour manipulations and was greatest in the control plots (with no neighbours removed) for all three species. The suppressive effect of neighbours was not markedly affected by nutrient level. However, yield suppression showed a significant decreasing trend with increasing nutrient level for biomass production in Agropyron and an increasing trend for tiller production in Phleum. For Poa, there was no trend in the intensity of competition across nutrient level. The results suggest that the general intensity of competition within this community neither increases nor decreases with increasing nutrient level. Rather, coexisting species appear to respond individually in terms of the intensity of competition that they experience. These results conflict with predictions from the triangular C-S-R model of plant strategies. However, they are consistent with a recently modified ‘habitat templet’ model for vegetation.  相似文献   
8.
Summary The microdistribution of diploid and tetraploid plants of Dactylis glomerata L. was examined and related to their immediate environment in several sites in central Galicia, where morphologically indistinguishable individuals of both ploidies grow in sympatry. The two related cytotypes differed in habitat preference. Diploids were mainly confined to the low-density forest-floor habitat in woodlands of mostly ancient origin, whereas tetraploids were widespread in varied habitats but clearly predominant in open areas, particularly in disturbed anthropic sites. The in situ comparison of plant performance showed that where plants of each ploidy were more common they produced more tillers, panicles and seeds. This habitat preference closely reflected differences in life-history characteristics. The tetraploids had an early and short flowering time almost always completed before the aestival drought, whereas the diploids began to flower several weeks later and flowered throughout the drought. Comparisons along artificial gradients of soil water availability and light transmittance indicated that the cytotypes had distinct physiological requirements which probably originated in metabolic and more general genetic differentiation and could be directly attributable to ploidy. Habitat differentiation increases the species' colonizing ability. It also amplifies divergence in reproductive strategy between diploids and tetraploids, which reduces ineffective crossing between cytotypes and thereby permits them to coexist in sympatry. The effect of hybridization at the polyploid level on the differentiation between cytotypes was assessed from the recent introduction of a foreign tetraploid entity into the study area. Hybridization between the two distinct tetraploids was found to increase habitat differentiation between the diploids and the tetraploids, but the major part of this differentiation is probably attributable to ploidy itself.  相似文献   
9.
10.
Summary Females of the sunflower moth, Homoeosoma electellum held in the presence of pollen, or an ethanolic pollen extract, from the sunflower Helianthus annuus initiated calling behavior at a significantly younger age following emergence than those provided sucrose only. Furthermore, females with pollen subsequently spent more time calling, and had an increased rate of egg maturation, than those held without pollen. These effects were attributed to a kairomone as females held in the presence of, but denied direct access to, pollen behaved in the same manner as those in contact with pollen. The importance of this life history strategy for the exploitation of temporarily available resources, essential to the survival of neonate larvae, and on the dispersal of adults, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号