首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   2篇
  2011年   8篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
排序方式: 共有76条查询结果,搜索用时 171 毫秒
1.
 Mutations at the flügellos (fl) locus in Bombyx mori give rise to wingless pupae and moths. To understand the developmental steps responsible for the fl wing defect, we compared the morphological changes and protein synthesis profiles between fl and wild-type (WT) wing discs during larval development. Morphologically, the four wing discs in the fl homozygote larva developed normally at least until the fourth instar, but they were slightly smaller than those of the WT. After the last larval ecdysis, wing epithelial invagination and tracheal migration into the lacunar spaces evidently occurred in the WT wing discs. However, there was no apparent morphological change in fl discs through the fifth instar. The fl wing discs cultured in medium containing 20-hydroxyecdysone (20E) did not grow and develop, although the WT wing discs extended and differentiated under the same conditions. A comparison of protein synthesis in the wing discs revealed that several bands were differentially expressed between the fl and WT. A 41-kDa band expressed abundantly from larval to pharate pupal stages in the WT wing discs was rarely observed in fl discs. Furthermore, in vitro culture studies showed that the 41-kDa protein was induced by 20E and specifically synthesized in WT wing discs after the wandering stage, but not in fl discs. The wing-specific protein synthesis and morphogenesis in fl wing discs may be blocked due to aberrant expression of the fl gene. Received: 6 November 1996 / Accepted: 5 February 1997  相似文献   
2.
Members of the Wg/Wnt family provide key intercellular signals during embryonic development and in the maintenance of homeostatic processes, but critical aspects of their signal transduction pathways remain controversial. We have found that canonical Wg signaling in Drosophila involves distinct initiation and amplification steps, both of which require Arrow/LRP. Expressing a chimeric Frizzled2-Arrow protein in flies that lack endogenous Wg or Arrow showed that this construct functions as an activated Wg receptor but is deficient in signal amplification. In contrast, a chimeric Arrow protein containing the dimerization domain of Torso acted as a potent amplifier of Wg signaling but could not initiate Wg signaling on its own. The two chimeric proteins synergized, so that their co-expression largely reconstituted the signaling levels achieved by expressing Wg itself. The amplification function of Arrow/LRP appears to be particularly important for long-range signaling, and may reflect a general mechanism for potentiating signals in the shallow part of a morphogen gradient.  相似文献   
3.
Wnt signaling is important in organogenesis, and aberrant signaling in mature cells is associated with tumorigenesis. Several members of the Wnt family of signaling molecules are expressed in the developing pituitary gland. Wnt5a is expressed in the neuroectoderm that induces pituitary gland development and has been proposed to influence pituitary cell specification. We discovered that mice deficient in Wnt5a display abnormal morphology in the dorsal part of the developing pituitary. The expression of downstream effectors of the canonical Wnt pathway is not altered, and expression of genes in other signaling pathways such as Shh, Fgf8, Fgf10 and Fgfr2b is intact. Prop1 and Hesx1 are also important for normal shape of the pituitary primordium, but their expression is unaltered in the Wnt5a mutants. Specification of the hormone-producing cell types of the mature anterior pituitary gland occurs appropriately. This study suggests that the primary role of Wnt5a in the developing pituitary gland is in establishment of the shape of the gland.  相似文献   
4.
5.
Morphogen gradient formation and vesicular trafficking   总被引:3,自引:1,他引:2  
Morphogens are secreted signaling molecules which form spatial concentration gradients while moving away from a restricted source of production. A simple model of gradient formation postulates that the morphogens dilute as they diffuse between cells. In this review we discuss recent data supporting the idea that movement of the morphogen could also occur via vesicular trafficking through the cells. We explore the implications of these results for the control of gradient formation and the determination of the gradient slope which ultimately encodes the coordinates of positional information.  相似文献   
6.
Wnt genes are often expressed in overlapping patterns, where they affect a wide array of developmental processes. To address the way in which various Wnt signals elicit distinct effects we compared the activities of two Wnt genes in Drosophila, DWnt-4, and wingless. We show that these Wnt signals produce distinct responses in cells of the dorsal embryonic epidermis. Whereas wingless acts independently of hedgehog signaling in these cells, we show that DWnt-4 requires Hh to elicit its effects. We also show that expression of Wg signal transduction components does not mimic expression of DWnt-4, suggesting that DWnt-4 signaling proceeds through a distinct pathway. The dorsal epidermis may therefore be useful in the identification of novel Wnt signaling components. Received: 16 August 1999 / Accepted: 19 August 1999  相似文献   
7.
During the development of any organism, care must be given to properly pattern gene expression in temporally and spatially regulated manners. This process becomes more complex when the signals that regulate a target tissue are produced in an adjacent tissue and must travel to the target tissue to affect gene expression. We have used the developing somatic mesoderm in Drosophila as a system in which to examine this problem. Our investigation uncovered a novel mechanism by which Wingless (Wg) can travel from its source in the ectoderm to regulate the expression of the somatic muscle founder identity gene, slouch, in the ventral mesoderm. Delivery of Wg to the mesoderm by the developing Central Nervous System (CNS) exploits the stereotypic formation of this tissue to provide high Wg levels to Slouch founder cell cluster II in a temporally specific manner. Coordinated development of these tissues provides a reliable mechanism for delivering high Wg levels to a subset of mesodermal cells. It also provides a means for one signaling pathway to be used reiteratively throughout development to impart unique positional and character information within a target field.  相似文献   
8.
A role for Wnt signal transduction in the development and maintenance of brain structures is widely acknowledged. Recent studies have suggested that Wnt signaling may be essential for synaptic plasticity and neurotransmission. However, the direct effect of a Wnt protein on synaptic transmission had not been demonstrated. Here we show that nanomolar concentrations of purified Wnt3a protein rapidly increase the frequency of miniature excitatory synaptic currents in embryonic rat hippocampal neurons through a mechanism involving a fast influx of calcium from the extracellular space, induction of post-translational modifications on the machinery involved in vesicle exocytosis in the presynaptic terminal leading to spontaneous Ca2+ transients. Our results identify the Wnt3a protein and a member of its complex receptor at the membrane, the low density lipoprotein receptor-related protein 6 (LRP6) coreceptor, as key molecules in neurotransmission modulation and suggest cross-talk between canonical and Wnt/Ca2+ signaling in central neurons.  相似文献   
9.
During animal development, Wnt/Wingless (Wg) signaling is required for the patterning of multiple tissues. While insufficient signal transduction is detrimental to normal development, ectopic activation of the pathway can be just as devastating. Thus, numerous controls exist to precisely regulate Wg signaling levels. Endocytic trafficking of pathway components has recently been proposed as one such control mechanism. Here, we characterize the vesicular trafficking of Wg and its receptors, Arrow and DFrizzled-2 (DFz2), and investigate whether trafficking is important to regulate Wg signaling during dorsoventral patterning of the larval wing. We demonstrate a role for Arrow and DFz2 in Wg internalization. Subsequently, Wg, Arrow and DFz2 are trafficked through the endocytic pathway to the lysosome, where they are degraded in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner. Surprisingly, we find that Wg signaling is not attenuated by lysosomal targeting in the wing disc. Rather, we suggest that signaling is dampened intracellularly at an earlier trafficking step. This is in contrast to patterning of the embryonic epidermis, where lysosomal targeting is required to restrict the range of Wg signaling. Thus, signal modulation by endocytic routing will depend on the tissue to be patterned and the goals during that patterning event.  相似文献   
10.
A viable wingless 2spot ladybirdAdalia bipunctata (L.) was found in the wild. Breeding through four generations revealed that the wingless trait was controlled by a recessive allele which displays variable levels of expression. The wingless ladybird is discussed in relation to its potential as a biocontrol agent. One ladybird also occurred in this stock which is suggestive of a supergene controlling the colour polymorphism in this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号