首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2014年   2篇
  2013年   2篇
  2007年   1篇
  2006年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Kraft TF  van Loon JJ  Kiss JZ 《Planta》2000,211(3):415-422
 In order to study gravity effects on plant structure and function, it may become necessary to remove the g-stimulus. On Earth, various instruments such as clinostats have been used by biologists in an attempt to neutralize the effects of gravity. In this study, the position of amyloplasts was assayed in columella cells in the roots of Arabidopsisthaliana (L.) Heynh. seedlings grown in the following conditions: on Earth, on a two-dimensional clinostat at 1 rpm, on a three-dimensional clinostat (also called a random-positioning machine, or an RPM), and in space (true microgravity). In addition, the effects of these gravity treatments on columella cell area and plastid area also were measured. In terms of the parameters measured, only amyloplast position was affected by the gravity treatments. Plastid position was not significantly different between spaceflight and RPM conditions but was significantly different between spaceflight and the classical two-dimensional clinostat treatments. Flanking columella cells showed a greater susceptibility to changes in gravity compared to the central columella cells. In addition, columella cells of seedlings that were grown on the RPM did not exhibit deleterious effects in terms of their ultrastructure as has been reported previously for seedlings grown on a two-dimensional clinostat. This study supports the hypothesis that the RPM provides a useful simulation of weightlessness. Received: 5 January 2000 / Accepted: 22 February 2000  相似文献   
2.
Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.  相似文献   
3.
目的:PKD2(polycystin2,多囊肾病蛋白2)能够在细胞膜上形成无选择性的阳离子通道,在肾上皮细胞中PKD2 与初级纤毛 共定位,通过改变胞内的钙信号过程参与细胞对力学刺激的响应。本实验通过二维回转培养来模拟失重效应,旨在探讨二维回转 培养对MLO-Y4 骨样细胞PKD2 表达定位,及胞内钙信号的影响。初步了解PKD2 在小鼠骨样细胞MLO-Y4 响应力学刺激过程 中起的作用。方法:采用二维回转培养骨样细胞MLO-Y4,用RT-PCR和western blotting检测PKD2的表达,用荧光共聚焦显微镜 检测细胞中PKD2 与初级纤毛的定位及细胞内钙离子含量。结果:与对照组相比,在二维回转培养后,骨样细胞MLO-Y4 的PKD2 表达在mRNA和蛋白水平都有明显的下降,PKD2、PKD1(polycystin1,多囊肾病蛋白1)和乙酰化的α-tubulin 共定位,同时二维回 转培养降低了细胞内钙离子含量。结论:在二维回转培养下,PKD2可能通过调节自身表达来改变细胞膜上PKD 通道的数目和开 放情况来影响细胞内钙离子含量,参与骨细胞对细胞外应力的感受过程,其详细机制还有待进一步实验研究。这将对探讨骨细胞 响应力学刺激的具体机制提供重要的理论依据。  相似文献   
4.
Studies of astronauts, experimental animals, and cells have shown that, after spaceflights, the function of the thyroid is altered by low-gravity conditions. The objective of this study was to investigate the cytoskeleton and extracellular matrix (ECM) protein synthesis of papillary thyroid cancer cells grown under zero g. We investigated alterations of ONCO-DG 1 cells exposed to simulated microgravity on a three-dimensional random-positioning machine (clinostat) for 30 min, 24 h, 48 h, 72 h, and 120 h (n=6, each group). ONCO-DG 1 cells grown under microgravity exhibited early alterations of the cytoskeleton and formed multicellular spheroids. The cytoskeleton was disintegrated, and nuclei showed morphological signs of apoptosis after 30 min. At this time, vimentin was increased. Vimentin and cytokeratin were highly disorganized, and microtubules (α–tubulin) did not display their typical radial array. After 48 h, the cytoskeletal changes were nearly reversed. The formation of multicellular spheroids continued. In parallel, the accumulation of ECM components, such as collagen types I and III, fibronectin, chondroitin sulfate, osteopontin, and CD44, increased. The levels of both transforming growth factor beta-1 (TGF-β1) and TGF-β receptor type II proteins were elevated from 24 h until 120 h clinorotation. Gene expression of TGF-β1 was clearly enhanced during culture under zero g. The amount of E-cadherin was enhanced time-dependently. We suggest that simulated weightlessness rapidly affects the cytoskeleton of papillary thyroid carcinoma cells and increases the amount of ECM proteins in a time-dependent manner.The work of Augusto Cogoli was supported by ETH Zurich, Switzerland.  相似文献   
5.
The effect of weightlessness on physical and biological systems is frequently studied by experiments in space. However, on the ground, gravity effects may also be strongly attenuated using methods such as magnetic levitation and clinorotation. Under suitable conditions, in vitro preparations of microtubules, a major element of the cytoskeleton, self-organise by a process of reaction–diffusion: self-organisation is triggered by gravity and samples prepared in space do not self-organise. Here, we report experiments carried out with ground-based methods of clinorotation and magnetic levitation. The behaviour observed closely resembles that of the space-flight experiment and suggests that many space experiments could be carried out equally well on the ground. Using clinorotation, we find that weak vibrations also trigger microtubule self-organisation and have an effect similar to gravity. Thus, in some in vitro biological systems, vibrations are a countermeasure to weightlessness.  相似文献   
6.
关莹  续惠云  瓮媛媛  商澎 《生物磁学》2014,(14):2601-2605
目的:PKD2(polycystin2,多囊肾病蛋白2)能够在细胞膜上形成无选择性的阳离子通道,在肾上皮细胞中PKD2与初级纤毛共定位,通过改变胞内的钙信号过程参与细胞对力学刺激的响应。本实验通过二维回转培养来模拟失重效应,旨在探讨二维回转培养对MLO-Y4骨样细胞PKD2表达定位,及胞内钙信号的影响。初步了解PKD2在小鼠骨样细胞MLO-Y4响应力学刺激过程中起的作用。方法:采用二维回转培养骨样细胞MLO-Y4,用RT-PCR和western blotting检测PKD2的表达,用荧光共聚焦显微镜检测细胞中PKD2与初级纤毛的定位及细胞内钙离子含量。结果:与对照组相比,在二维回转培养后,骨样细胞MLO-Y4的PKD2表达在mRNA和蛋白水平都有明显的下降,PKD2、PKD1(polycystin1,多囊肾病蛋白1)和乙酰化的α-tubulin共定位,同时二维回转培养降低了细胞内钙离子含量。结论:在二维回转培养下,PKD2可能通过调节自身表达来改变细胞膜上PKD通道的数目和开放情况来影响细胞内钙离子含量,参与骨细胞对细胞外应力的感受过程,其详细机制还有待进一步实验研究。这将对探讨骨细胞响应力学刺激的具体机制提供重要的理论依据。  相似文献   
7.
We studied the effect of gravity on cerebral cortical blood flow (CBF), mean arterial blood pressure () and heart rate in six rabbits exposed to parabolic flights. The CBF was obtained using a laser-Doppler probe fixed on to a cranial window. Before weightlessness, the animals were exposed to chest-to-back directed acceleration (1.8–2.0 g). The CBF values were expressed as a percentage of CBFo (mean CBF during 60 s before the 1st parabola). Propranolol (1 mg · kg−1 IV) was given after the 11th parabola and pentobarbital (12–15 mg · kg−1 IV) after the 16th parabola. Before the administration of the drugs, CBF increased (P < 0.01) during hypergravity [i.e. maximal CBF 151 (SD 64)% CBFo. Simultaneously increased [maximal , 119 (SD 11) mmHg (P < 0.01)]. At the onset of weightlessness, CBF and reached maximal values [194 (SD 96)% CBFo (P < 0.01) and 127 (SD 19) mmHg, (P < 0.01) respectively]. The microgravity-induced increase in CBF was transient since CBF returned to its baseline value after 8 (SD 2) s of microgravity. After propranolol administration, CBF was not statistically different during hypergravity but an elevation of CBF was still observed in weightlessness. The increases in CBF and also persisted during weightlessness after pentobarbital administration. These data would indicate that CBF of nonanesthetized rabbits increases during the first seconds of weightlessness and demonstrate the involvement of rapid active regulatory mechanisms since CBF returned to control values within 8 (SD 2) s. We concluded that this elevation in blood flow was not related to stress because it persisted after the administration of propranolol and pentobarbital. Accepted: 6 November 1997  相似文献   
8.
The effect of a 120-day 6° head-down tilt (HDT) bed rest with and without countermeasures on the mechanical properties of the human triceps surae muscle was studied in eight healthy young women subjects. One group [n = 4, mean age 31.5 (SEM 1.7) years] underwent a 120-day HDT only and a second group [n = 4; mean age 28.0 (SEM 1.1) years] underwent HDT with countermeasures (physical training). The results showed that the contractile properties of the skeletal muscle studied changed considerably. After HDT without countermeasures the maximal voluntary contraction (MVC) had decreased by 36% (P < 0.05), and the electrically evoked tetanic tension at 150 Hz (P o) and isometric twitch contraction (P t) had decreased by 24% (P < 0.02) and 12% (P < 0.05), respectively. Time- to-peak tension (TPT) of the twitch had significantly increased by 14% (P<0.05), but half-relaxation time (1/2RT), and total contraction time (TCT) had decreased by 19% (P<0.05) and 18% (P<0.05), respectively. The difference between P o and MVC expressed as a percentage of P o and referred to as force deficiency (FD), was also calculated. The FD had increased by 40% (P<0.001). The rate of increase of voluntary contractions calculated according to a relative scale had significantly reduced, but for the electrically evoked contraction no substantial changes were observed. After HDT with countermeasures TPT, 1/2RT and TCT of the twitch had decreased by 4%, 7%, 19%, respectively in relation to the control condition. Training had caused a decrease of 3% (P>0.05) in MVC, and P t, and in P o of 14%, and of 9% (P>0.05), respectively. The FD had decreased significantly by 10% (P<0.02). The rate of increase of electrically evoked tetanic tension did not change significantly during HDT with countermeasures but the rate of increase in isometric voluntary tension development was increased. Physical training provided a reserve of neuromuscular function, which attenuated the effect of bed rest. The experimental findings indicated that neural as well as muscle adaptation occurred in response to HDT with countermeasures. Accepted: 7 November 1997  相似文献   
9.
目的:探讨30天模拟失重后高+Gx过载对猴猴心肌超微结构、血浆内皮素-1及C反应蛋白的影响,来研究模拟失重超重对心血管的影响,本实验为研究抗荷服和飞船轨道运行段应急返回超重医学提供实验数据.方法:15只雄性猕猴随机分为5组,即模拟失重组(对照组,A),+13 Gx/230 s组(B),模拟失重超重组+11 Gx/270 s(C),模拟失重超重组+13 Gx/230 s(D)和模拟失重超重组+15 Gx/200 s(E).动物放血处死,抽取血液测定血浆内皮素-1及C反应蛋白的含量,组织取材后经戊二醛固定,制成电镜标本,观察猴心肌超微结构的变化.结果:C组、D组和E组血浆内皮素-1及C反应蛋白含量较A组升高,有统计学意义(P<0.05),C、D、E组之间无统计学意义(P>0.05).D组血浆内皮素-1及C反应蛋白含量较B组升高,有统计学意义(P<0.05).电镜下A组可见线粒体双层膜结构清晰,线粒体嵴清晰;B、C、D组部分线粒体出现双层膜结构消失,嵴数量减少;E组线粒体出现水肿、空泡样变,肌节断裂.结论:(1)失重后超重+13 Gx可引起心肌轻微损伤,失重后超重+15 Gx心肌损伤严重,且损伤程度随着+Gx值的增加而加重.(2)失重后超重比单纯超重心肌损伤严重.(3)本实验为超重耐力研究和提出科学合理的飞船轨道运行段应急返回超重医学提供实验支持.  相似文献   
10.
航天飞行后心血管失调的外周效应器机制假说   总被引:9,自引:0,他引:9  
作者及其同事曾用尾部悬吊大鼠模型模拟失重时的血液头向转移和重新分布变化,较系统地研究了模拟失重下心肌与动脉血管结构和功能的适应性改变。联系20世纪90年代空间研究与地面模拟研究最新进展,多们认为,除血量减少因素外,心血管系统的两个主要效应器-心肌和动脉血管平滑肌,在失重时发生的适应性结构和功能改变可能是导致航天飞行后心血管失调的重要原因之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号