首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   18篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   6篇
  2011年   14篇
  2010年   9篇
  2009年   7篇
  2008年   11篇
  2007年   10篇
  2006年   16篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
  1984年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
2.
I analyzed geographic partitioning of mitochondrial DNA (mtDNA) restriction-site variants in the spotted salamander, Ambystoma maculatum. Two highly divergent and geographically separate genetic lineages were identified that differed by a minimum of 19 restriction sites (6% sequence divergence). One of the lineages has a disjunct distribution with very closely related haplotypes occurring in Missouri, Arkansas, North Carolina, and Virginia. The other lineage is found in Michigan, Illinois, and Alabama. The geographic separation of highly divergent mtDNA haplotypes, a pattern that was predicted based on the sedentary nature of these salamanders, is evidence for long-term barriers to gene flow. In contrast, the large-scale disjunction of very similar haplotypes suggests recent, long-distance gene flow and does not match the phylogeographic expectation for a small terrestrial vertebrate. I explain this potential contradiction in the level of importance assigned to gene flow by a scenario in which historical barriers to gene flow account for the two divergent mtDNA assemblages, but stochastic sorting of ancestral polymorphism is responsible for the large-scale geographic disjunction. Ten of 16 populations collected in the Ozark Highlands were fixed for the same haplotype. I attribute this lack of detectable variation to recent colonization of this area, a hypothesis that is supported by paleoecological data and demonstrates the potential benefits of combining data from paleobotany, geology, and other disciplines to reconstruct the historical biogeography of a species.  相似文献   
3.
4.
The morpho–environmental similarity between subsections Natrix and Viscosae has been pointed out as the reason for the genetic complexity of these groups of taxa. Based on this characterization a question emerges: could a very recent ongoing evolutionary process explain that morpho–environmental similarity? ISSR and cpSSR amplifications for 45 specimens belonging to taxa of Natrix and Viscosae subsections were developed, along their biogeographic distribution areas. Twenty-nine haplotypes were detected in the biogeographic area of both subsections, 79% were exclusive haplotypes, but the rest is shared between subsections Natrix and Viscosae species. Could that haplotype sharing be the result of potential hybridization between these taxa? Do current environmental conditions restrict the gene flow among taxa? The combination of ancestral genetic polymorphism, introgression, coalescence processes and periodic restricted environments (PRE) by glacial–interglacial environmental dynamics were discussed to explain the relevant percentage of exclusive haplotypes detected, as well as the persistence of shared haplotypes. These results are in accordance with the morpho–environmental proximity previously described for both subsections.  相似文献   
5.
Neiman M  Lively CM 《Molecular ecology》2004,13(10):3085-3098
Pleistocene glaciation has been identified as an important factor shaping present-day patterns of phylogeographical structure in a diverse array of taxa. The purpose of this study was to use mitochondrial sequence data to address whether Pleistocene glaciation is also a major determinant of phylogeographical patterns in Potamopyrgus antipodarum, a freshwater snail native to New Zealand. We found that haplotypes were separated by no more than 3.7% sequence divergence, and major genetic divisions tended to occur on a north-south axis. These data fit the predictions of the hypothesis that isolation of P. antipodarum in glacial refugia at the northern and southern tip of the South Island of New Zealand during the Pleistocene glaciation underlies the present-day phylogeographical structure. Because sexual P. antipodarum occasionally produce asexual offspring, we also used these data to show that the appearance of asexuality is not phylogeographically constrained. This means that the maintenance of sex in P. antipodarum cannot be wholly due to limited contact between sexual and asexual lineages and must instead be linked to a selective advantage of sexual reproduction.  相似文献   
6.
Zooplankton of the family Bosminidae have a unique paleolimnological record in many Holarctic lakes that provides a near continuous record of morphological change for thousands of years. If this morphological change could be interpreted reliably, then a rarely achieved direct observation of macroevolution would be feasible. We tested paleolimnological predictions derived from morphological variation found in the genus Eubosmina using mtDNA and nuclear DNA sequence variation from geographically distant Holarctic sites. The mtDNA and nDNA trees were congruent but genetic divergence was inversely associated with morphological divergence. The three most genetically divergent groups belonged to Eubosmina longispina, whose phylogeography and genetic divergence was consistent with glacial vicariance. The genetic evidence also supported the hypothesis that at least two Nearctic species were recent European introductions. Finally, the genetic evidence was consistent with paleolimnology in the finding of several proposed species undergoing rapid morphological evolution and being post-glacially derived from European E. longispina. The results suggested that lacustrine bosminids are susceptible to geographic speciation processes, and that morphological interpretation of diversity in paleolimnology can be markedly improved by genetic studies.  相似文献   
7.
An understanding of the relative roles of historical and contemporary factors in structuring genetic variation is a fundamental, but understudied aspect of geographic variation. We examined geographic variation in microsatellite DNA allele frequencies in bull trout (Salvelinus confluentus, Salmonidae) to test hypotheses concerning the relative roles of postglacial dispersal (historical) and current landscape features (contemporary) in structuring genetic variability and population differentiation. Bull trout exhibit relatively low intrapopulation microsatellite variation (average of 1.9 alleles per locus, average He = 0.24), but high levels of interpopulation divergence (F(ST) = 0.39). We found evidence of historical influences on microsatellite variation in the form of a decrease in the number of alleles and heterozygosities in populations on the periphery of the range relative to populations closer to putative glacial refugia. In addition, one region of British Columbia that was colonized later during deglaciation and by more indirect watershed connections showed less developed and more variable patterns of isolation by distance than a similar region colonized earlier and more directly from refugia. Current spatial and drainage interconnectedness among sites and the presence of migration barriers (falls and cascades) within individual streams were found to be important contemporary factors influencing historical patterns of genetic variability and interpopulation divergence. Our work illustrates the limited utility of equilibrium models to delineate population structure and patterns of genetic diversity in recently founded populations or those inhabiting highly heterogeneous environments, and it highlights the need for approaches incorporating a landscape context for population divergence. Substantial microsatellite DNA divergence among bull trout populations may also signal divergence in traits important to population persistence in specific environments.  相似文献   
8.
Using the phylogeographic framework, we assessed the DNA sequence variation at the mitochondrial cytochrome b gene across the distribution range of the barbel Barbus barbus, a widely distributed European cyprinid. Reciprocal monophyly of non-Mediterranean European and Balkan/Anatolian populations is taken as evidence for a long-term barrier to gene flow, and interpreted as a consequence of survival of the species in two separate refugia during several later glacial cycles. Lack of profound genealogical divergence across Europe from western France to the northwestern Black Sea basin is consistent with recent colonization of this area from a single glacial refuge, which was probably located in the Danube River basin. This may have occurred in two steps: into the Western European river basins during the last interglacial, and throughout the Central European river basins after the last glacial. The populations from the Balkans and Anatolia apparently did not contribute mitochondrial DNA to the post-Pleistocene colonization of non-Mediterranean Europe. Lack of detectable variation within the Balkans/Anatolia is attributed mainly to recent expansion throughout these regions, facilitated by the freshwater conditions and seashore regression in the Black Sea during the Late Pleistocene and Early Holocene.  相似文献   
9.
Most research on the biological effects of Pleistocene glaciation and refugia has been undertaken in the northern hemisphere and focuses on lowland taxa. Using single-strand conformation polymorphism (SSCP) analysis and sequencing of mitochondrial cytochrome oxidase I, we explored the intraspecific phylogeography of a flightless orthopteran (the alpine scree weta, Deinacrida connectens) that is adapted to the alpine zone of South Island, New Zealand. We found that several mountain ranges and regions had their own reciprocally monophyletic, deeply differentiated lineages. Corrected genetic distance among lineages was 8.4% (Kimura 2-parameter [K2P]) / 13% (GTR + I + Gamma), whereas within-lineage distances were only 2.8% (K2P) / 3.2% (GTR + I + Gamma). We propose a model to explain this phylogeographical structure, which links the radiation of D. connectens to Pliocene mountain building, and maintenance of this structure through the combined effects of mountain-top isolation during Pleistocene interglacials and ice barriers to dispersal during glacials.  相似文献   
10.
Aim The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post‐glacial history of many high‐mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems – the Alps and the Carpathians. Location Alps and Carpathians. Methods The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results Neighbour joining and principal coordinate analyses revealed three well‐supported phylogeographical groups of populations corresponding to three disjunct geographical regions – the Alps and the western and south‐eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within‐population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region‐diagnostic markers than those from the south‐eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south‐western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south‐eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long‐term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号