首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  国内免费   2篇
  2021年   4篇
  2018年   1篇
  2017年   2篇
  2013年   1篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
Summary In the Chihuahuan Desert of southern New Mexico, both water and nitrogen limit the primary productivity of Larrea tridentata, a xerophytic evergreen shrub. Net photosynthesis was positively correlated to leaf N, but only in plants that received supplemental water. Nutrient-use efficiency, defined as photosynthetic carbon gain per unit N invested in leaf tissue, declined with increasing leaf N. However, water-use efficiency, defined as the ratio of photosynthesis to transpiration, increased with increasing leaf N, and thus these two measures of resource-use efficiency were inversely correlated. Resorption efficiency was not significantly altered over the nutrient gradient, nor was it affected by irrigation treatments. Leaf longevity decreased significantly with fertilization although the absolute magnitude of this decrease was fairly small, in part due to a large background of insect-induced mortality. Age-specific gas exchange measurements support the hypothesis that leaf aging represents a redistribution of resources, rather than actual deterioration or declining resource-use efficiency.  相似文献   
2.
生长于100%、40%和16%自然光下的荷木和黧蒴幼苗叶片稳定碳同位素比(δ13C,-‰),细胞间CO2浓度(Ci)和水分利用效率(WUE)有一定的差别。16%和40%弱光下,δ13C的负值增加-0.54J‰到-0.89‰。Ci增大8.1-13.2μiL-1,WUE则下降6-24%。结果表明,叶片的水分和气体交换特性受生长光强的调节,叶片的δ13C值可反映其生长过程中受光的强弱状况。  相似文献   
3.
Xylem-tapping mistletoes transpire large volumes of water (E) while conducting photosynthesis (A) at low rates, thus maintaining low instantaneous wateruse efficiency (A/E). These gas-exchange characteristics have been interpreted as a means of facilitating assimilation of nitrogen dissolved at low concentration in host xylem water; however, low A/E also results in substantial heterotrophic carbon gain. In this study, host trees (Juniperus osteosperma) were fertilized and gas exchange of mistletoe (Phoradendron juniperinum) and host were monitored to determine whether mistletoe A/E would approach that of the host if mistletoes were supplied with abundant nitrogen. Fertilization significantly increased foliar N concentrations (N), net assimilation rates, and A/E in both mistletoe and host. However, at any given N concentration, mistletoes maintained lower A and lower A/E than their hosts. On the other hand, when instantaneous water-use efficiency and A/N were calculated to include heterotrophic assimilation of carbon dissolved in the xylem sap of the host, both water-use efficiency and A/N converged on host values. A simple model of Phoradendron carbon and nitrogen budgets was constructed to analyze the relative benefits of nitrogen- and carbonparasitism. The model assumes constant E and includes feedbacks of tissue nitrogen concentration on photosyn-thesis. These results, combined with our earlier observation that net assimilation rates of mistletoes and their hosts are approximately matched (Marshall et al. 1994), support part of the nitrogen-parasitism hypothesis: that high rates of transpiration benefit the mistletoe primarily through nitrogen gain. However, the low ratio of A/E is interpreted not as a means of acquiring nitrogen, but as an inevitable consequence of an imbalance in C and N assimilation.This research was supported by the National Science Foundation (grants BSR-8706772 and 8847942).  相似文献   
4.
Patterns of genetic variation in gas-exchange physiology were analyzed in a 15-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation that contains 25 populations grown from seed collected from across the natural distribution of the species. Seed was collected from 33°30 to 53°12 north latitude and from 170 m to 2930 m above sea level, and from the coastal and interior (Rocky Mountain) varieties of the species. Carbon isotope discrimination () ranged from 19.70() to 22.43() and was closely related to geographic location of the seed source. The coastal variety (20.50 (SE=0.21)) was not significantly different from the interior variety (20.91 (0.15)). Instead, most variation was found within the interior variety; populations from the southern Rockies had the highest discrimination (21.53 (0.20)) (lowest water-use efficiency). Carbon isotope discrimination (), stomatal conductance to water vapor (g), the ratio of intercellular to ambient CO2 concentration (ci/ca), and intrinsic water-use efficiency (A/g) were all correlated with altitude of origin (r=0.76, 0.73, 0.74, and –0.63 respectively); all were statistically significant at the 0.01 level. The same variables were correlated with both height and diameter at age 15 (all at P0.0005). Observed patterns in the common garden did not conform to our expectation of higher WUE, measured by both A/g and , in trees from the drier habitats of the interior, nor did they agree with published in situ observations of decreasing g and with altitude. The genetic effect opposes the altitudinal one, leading to some degree of homeostasis in physiological characteri tics in situ.  相似文献   
5.
Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.  相似文献   
6.
A sand culture experiment assessed whether gibberellic acid(GA3) could alleviate the adverse effects of salt stress on thegrowth, ion accumulation and photosynthetic capacity of two spring wheatcultivars, Barani-83 (salt sensitive) and SARC-I (salt tolerant).Three-week-oldplants of both cultivars were exposed to 0, 100 and 200 molm–3 NaCl in Hoagland's nutrient solution. Threeweeks after the initiation of salt treatments, half of the plants of eachcultivar were sprayed overall with 100 mg L–1GA3 solution. Plants were harvested 3 weeks after theapplication of GA3. Fresh and dry weights of shoots and roots, plantheight and leaf area were decreased with increasing supply of salt, butgibberellic acid treatment caused a significant ameliorative effect on both thecultivars with respect to these growth attributes. However, GA3caused no significant change in grain yields but increased grain size in boththe cultivars. Saline growth medium caused a marked increase in theconcentrations of Na+ and Cl in shoots androots of both the lines. However, with the application of GA3accumulation of Na+ and Cl was enhanced inboth shoots and roots of both wheat lines, but more ions accumulated in saltsensitive Barani-83 than in salt tolerant SARC-1. Net CO2assimilation rate (A) of both wheat lines decreased consistently withincreasingsupply of NaCl, but application of GA3 alleviated the effect of saltstress on this variable in both the cultivars. However, the ameliorative effectof the hormone was more pronounced in Barani-83 than in SARC-1. Althoughwater-use efficiency (A/E=CO2assimilation/transpiration) and intrinsic water use efficiency(A/gs=CO2 assimilation/stomatalconductance) decreased significantly with increasing salt concentration of thegrowth medium in both the cultivars, GA3 was more effective inenhancing both the water-use attributes in Barani-83 than in SARC-1. Overall,GA3 treatment stimulated the vegetative growth of both cultivars ofwheat under salt stress, but it caused a slight reduction in grain yield.GA3 treatment enhanced the accumulation of Na+ andCl in both shoots and roots of wheat plants under saltstress.It also caused a significant increase in photosynthetic capacity in both linesat the vegetative stage under both saline and non-saline media.  相似文献   
7.
Zu-Hua Yin  John A. Raven 《Planta》1998,205(4):574-580
The impacts of various nitrogen sources, i.e. NO 3, NH4 + or NH4NO3 in combination with gaseous NH3, on nitrogen-, carbon- and water-use efficiency and 13C discrimination (δ13C) by plants of the C3 species Triticum aestivum L. (wheat) and the C4 species Zea mays L. (maize) were studied. Triticum aestivum and Z. mays were hydroponically grown with 2 mol · m−3 of N supplied as NO 3, NH4 + or NH4NO3 for 21 and 18 d, respectively, and thereafter exposed to gaseous NH3 at 320 μg · m−3 or to ambient air for 7 d. In T. aestivum and Z. mays over a 7-d growth period, nitrogen-use efficiency (NUE) values were influenced by N-sources in the decreasing order NH4NO3-N > NO 3-N > NH4 +-N and NO 3-N > NH4NO3-N > NH4 +-N, respectively. Fumigation with NH3 decreased the NUE values of plants grown with any of the N-forms. During 28- and 7-d growth periods, N-sources affected water-use efficiency (WUE) values in the decreasing order of NH4 +-N > NO 3-N≈NH4NO3-N in non-fumigated T. aestivum, while fumigation with NH3 increased the WUE of NO 3-grown plants. There were insignificant effects of N-sources on WUE values of Z. mays over 25- and 7-d growth periods. Furthermore, δ13C values in plant tissues (leaves, stubble and roots) were higher (less negative) in NH4 +-grown plants of T. aestivum and Z. mays than in those supplied with NH4NO3 or NO 3. Regardless of the N-form supplied to the roots of the plant species, exposure to NH3 caused more-positive δ13C values in the plant tissues. These results indicate that the variations in N-source were associated with small but significant variations in δ13C values in plants of T. aestivum and Z. mays. These differences in δ13C values are in the direction expected from differences in WUE values over long or short growth periods and with differences in the extent of non-Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase, EC 4.1.1.39) carboxylate contribution to net C acquisition, as a function of N-source. Received: 12 September 1997 / Accepted: 13 January 1998  相似文献   
8.
 Three-year-old Eucalyptus nitens (Deane and Maiden) Maiden trees and 1-year-old ramets of a single clone of E. nitens were pruned to remove 0, 50% or 70% of the green crown length. This was equivalent to removal of 0, 55% or 88% of foliage area of trees, and 0, 77% or 94% of foliage area of ramets. CO2 assimilation (A) and stomatal conductance (gs) were measured at constant illumination in five height zones and three foliage-age classes of trees over a 16-month period following pruning. Foliar nitrogen (N) and phosphorus (P) concentrations were determined for each measurement time during the first 12 months of the experiment. In ramets A and gs were measured in four height zones and two foliage-age classes over a six-week period, and N and P concentrations were measured only once, at the end of the experiment. Rates of A increased by up to 175% following pruning. This response occurred throughout the canopy irrespective of position in the crown or foliage age. The magnitude of the response was generally greater in ramets than in trees, and increased with increasing severity of pruning. The initiation of the response was later, and the duration of the response was longer, in trees than ramets. In the lower crown of trees there was evidence of delayed senescence following pruning. Photosynthetic enhancement was not related to changes in foliar N concentrations. The ratio of A/N increased in many zones following pruning, especially after more severe defoliation. There was no evidence that changes in P concentrations were responsible for the result. The increases in A may have been related to changes in gs, as maximum values of gs were greater, and the ratio of A/gs was generally lower, in pruned than unpruned plants. Received: 31 December 1996 / Accepted: 19 August 1997  相似文献   
9.
The seasonal variation in 13C values was measured in leaves from 17 upper canopy, five mid- canopy and in four gap tree species, as well as in five epiphyte and five vine species, in a seasonally dry lowland tropical forest at Parque Natural Metropolitano near Panama City, Republic of Panama. No seasonal variation was detected in the 13C values of mature exposed leaves from either the upper or mid- canopy. However, canopy position did influence the 13C value. The mean isotopic composition of leaves from the mid- canopy was more negative than that of the upper canopy throughout the year. The 13C value was also influenced by leaf development, with juvenile leaves on average 1.5 less negative than mature leaves. The five epiphyte species exhibited 13C values that were typical of crassulacean acid metabolism (CAM). Codonanthe uleana, with isotopic values of –19.9 to –22.1, is only the second species in the Gesneriaceae reported to express CAM, whereas values between –14.6 and –22.0 indicate that Peperomia macrostachya can exhibit different degrees of CAM. The isotopic composition of exposed mature leaves from the vines showed little interspecific variation and was similar to the upper-canopy leaves of the trees.  相似文献   
10.
A greenhouse experiment was conducted in order to understand the adaptation responses to different water and N conditions, and further explore if additional N supply could improve the water-use efficiency (WUE) and adaptability of Sophora davidii seedlings under dry conditions. Two-month-old seedlings were subjected to a completely random design with three water (80, 40 and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh:184 mg N kg−1 soil) regimes. Drought stress dramatically decreased seedlings height, basal diameter, leaf number, leaf area, root length, and biomass production. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions, and drought further decreased relative water content (RWC) and WUE. On the other hand, S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply (Nl) increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, high N supply (Nh) decreased or had little effect on these growth characteristics. N supply increased leaf percentages, but decreased fine root percentages. In addition, Nl rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20% FC), even though these parameters could increase with the Nh treatment under well-watered condition (80% FC). Moreover, Nl also increased WUE under three water conditions, but Nh had little effect on WUE under drought stress conditions (40% FC and 20% FC). The results suggested that water and N co-limited the growth of S. davidii seedlings, and the seedlings exhibited great positive responses to Nl in this study. Appropriate or low N supply, therefore, would be recommended to stimulate growth, enhance WUE, alleviate drought stress, and consequently contribute to S. davidii seedling establishment under dry condition, but excess N supply should be avoided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号