首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Dysprosium ion (Dy3+) activated Ba2CaZn2Si6O17 phosphors were synthesized using high temperature solid‐state reaction method. Powder X‐ray diffraction (PXRD) analysis confirmed the phase formation of the as‐prepared phosphors. Scanning electron microscopy (SEM) analysis disclosed an agglomeration of particles with an irregular morphology. Under 350 nm excitation, the emission spectrum of Dy3+ ions showed bands at 481 nm (blue), 577 nm (yellow) and 674 nm (red). The influence of the Dy3+ concentration on its emission intensity was investigated. The optimum concentration of Dy3+ ions in the Ba2CaZn2Si6O17:Dy3+ phosphors were found to be x = 0.06. The critical energy transfer distance was calculated. The fluorescence lifetime was also determined for Ba2CaZn2Si6O17:0.06Dy3+. The Commission International deI’Eclairage (CIE) chromaticity coordinates of the phosphor were calculated to be x = 0.304, y = 0.382. The activation energy for the thermal quenching was calculated to be 0.168 eV. These results indicated that the Ba2CaZn2Si6O17:Dy3+ phosphor might be a potential candidate for near ultraviolet (NUV)‐based white light‐emitting diodes.  相似文献   
2.
Warm red-emitting praseodymium-doped LiSrVO4 phosphors were synthesized via solid-state reaction. The phase formation was verified using an X-ray diffraction study and the morphology was investigated using a scanning electron microscope study. The LiSrVO4:Pr3+ phosphors emitted red light when exposed to ultraviolet light, indicating their possibility for use in warm white light-emitting diodes (WLEDs). Furthermore, the effect of charge compensators on the luminescence characteristics was addressed. The decay time was investigated using time-resolved photoluminescence. Furthermore, thermal quenching was analyzed through temperature-dependent photoluminescence spectra. Their sensitivity was calculated using temperature-dependent decay time analysis. The colour purity of the emitted light could be measured by photometric analysis. This comprehensive investigation provides a thorough understanding of the luminescence properties of phosphors for WLED applications.  相似文献   
3.
Pyrochlore phosphors have shown their worth in modern day lighting in the last few years. Colour tunability of the phosphor is one of the modern techniques used to obtain white light-emitting diodes (WLEDs). In the proposed work, Y2Zr2O7:Sm3+,Eu3+ phosphors were investigated for WLED applications as well as display devices. A convectional solid-state diffusion method was used to synthesize the proposed phosphors. X-ray diffraction of the proposed phosphors was performed and compared with the standard Inorganic Crystal Structure Database. The crystal structure of the sample was cubic in nature, obtained from Rietveld refinement. Vibrational and morphological studies on the samples were carried out using Fourier transform infrared spectroscopy and scanning electron microscopy analysis. The photoluminescence study of the colour tunable phosphor showed the characteristic peak of Sm3+ together with the two sharp peaks of Eu3+ ions. Greenish yellow to red colour tunability was observed in the proposed phosphor with enhancement of Eu3+ ions. All these results showed the worth of this sample for WLEDs applications as well as in display devices.  相似文献   
4.
In the recent few years, Eu2+- and Mn4+-activated phosphors are widely used as potential colour converters for indoor plant cultivation lighting application due to their marvellous luminescence characteristics as well as low cost. In this investigation, we synthesized novel red colour-emitting Ca(2−x)Mg2(SO4)3:xmol% Eu2+ (x = 0–1.0 mol%) phosphors via a solid-state reaction method in a reducing atmosphere. The photoluminescence (PL) excitation spectra of synthesized phosphors exhibited a broad excitation band with three excitation bands peaking at 349 nm, 494 nm, and 554 nm. Under these excitations, emission spectra exhibited a broad band in the red colour region at ~634 nm. The PL emission intensity was measured for different concentrations of Eu2+. The maximum Eu2+ doping concentration in the Ca2Mg2(SO4)3 host was observed for 0.5 mol%. According to Dexter theory, it was determined that dipole–dipole interaction was responsible for the concentration quenching. The luminous red colour emission of the sample was confirmed using Commission international de l'eclairage colour coordinates. The results of PL excitation and emission spectra of the prepared phosphors were well matched with excitation and emission wavelengths of phytochrome PR. Therefore, from the entire investigation and obtained results it was concluded that the synthesized Ca0.995Mg2(SO4)3:0.5mol%Eu2+ phosphor has huge potential for plant cultivation application.  相似文献   
5.
This article focuses on the effect of monovalent cation doping on the optical properties of rare earth (RE = Eu3+, Tb3+) co-doped Ca14Zn6Al10O35 which has been synthesized by a low temperature combustion method. Crystalline phase of the Ca14Zn6Al10O35 phosphor was examined and confirmed by X-ray diffraction measurement. Under near-ultraviolet light excitation Eu3+-doped Ca14Zn6Al10O35 phosphor exhibit characterization of Eu3+ emission bands that are located at a maximum wavelength (λmax) of approximately 470 nm and other peaks centred at 593 nm and 615 nm, respectively. With Tb3+-doped Ca14Zn6Al10O35 phosphor showing a green emission band centred at 544 nm under near-ultraviolet range. Furthermore, we studied the energy transfer process in Eu3+/Tb3+pair and enhancement in photoluminescence (PL) intensity with doping different charge compensation. Here we obtained the optimum PL emission intensity of the phosphor in broad and intense visible spectral range which may be significant for the fabrication of white light emitting diodes (WLEDs).  相似文献   
6.
Cerium has been widely used as a dopant in luminescent materials due to its unique electronic configurations. It is generally anticipated that the luminescence properties of rare-earth-doped materials are closely related to the local environment of activators, especially for Ce3+. In addition, it is convenient to modulate its emission wavelength by adjusting the composition and structure. In this study, we systematically analyzed the microstructure of the Ce-doped CaYAlO4 system at atomic resolution. The quantitive results indicated that the structure distortion greatly influenced the valence state of the Ce dopant, which is critical to its luminescence efficiency. In addition, valence variations also exist from surface to inner structure due to the big distortion area around the surface. Our results unravel the interplay of local structure and valence transitions in Ce-doped aluminate phosphors, which has the potential to be applied in other luminescent materials.  相似文献   
7.
Yellowish-white light-emitting Gd2-xSi2O7:xDy3+ (x = 1–5 mol%) nanophosphors were prepared using a solution combustion synthesis method. Fluorescence spectrophotometry and X-ray diffraction measurements were performed to scrutinize the optical performances and phase recognition of the designated nanophosphors. The outcomes specified that the prepared phosphors were crystallized into a triclinic phase with a P-1 space group. As the concentration of Dy3+ ions was increased, the unit-cell volume decrease proportionally due to the replacement of large-sized Gd3+ by small-sized Dy3+ ions. Under ultraviolet excitation at 349 nm, emission spectra consisted of two pronounced emission lines at ~482 nm (blue line), ~578 nm (yellow line), and a relatively weaker emission at ~670 nm (red line) due to 4F9/26H15/2, 4F9/26H13/2, and 4F9/26H11/2 intraconfigurational transitions of Dy3+ ions, respectively. The evidence about the site symmetry around Dy3+ ions was examined by considering the ratio of yellow-to-blue emission intensity. The observed critical distance (Rc) value was ~20.56 Å (≫5 Å), which signified that energy transfer primarily occurred due to multipolar interaction. The obtained coordinates were close to the white region of the Commission Internationale de l'Éclairage chromaticity diagram, which marked a significant milestone in the development of white light-emitting diodes.  相似文献   
8.
Dy3+‐doped CaAl12O19 phosphors were synthesized utilizing a combustion method. Crystal structure and morphological examinations were performed respectively using X‐ray diffraction (XRD) and scanning electron microscopy (SEM) techniques to identify the phase and morphology of the synthesized samples. Fourier transform infrared spectroscopy (FTIR) estimations were carried out using the KBr method. Photoluminescence properties (excitation and emission) were recorded at room temperature. CaAl12O19:Dy3+ phosphor showed two emission peaks respectively under a 350‐nm excitation wavelength, centered at 477 nm and 573 nm. Dipole–dipole interaction via nonradiative energy shifting has been considered as the major cause of concentration quenching when Dy3+ concentration was more than 3 mol%. The CIE chromaticity coordinates positioned at (0.3185, 0.3580) for the CaAl12O19:0.03Dy3+ phosphor had a correlated color temperature (CCT) of 6057 K, which is situated in the cool white area. Existing results point out that the CaAl12O19:0.03Dy3+ phosphor could be a favorable candidate for use in white light‐emitting diodes (WLEDs).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号