首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2021年   2篇
  2019年   1篇
  2016年   1篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
Modulated differential scanning calorimetry, wide angle x-ray scattering, and environmental scanning electron microscopy were used to investigate the physical and morphological properties of chicory root inulin spray dried under different conditions. When the feed temperature increased up to 80 °C, the average degree of polymerization of the solubilized fraction increased, leading to a higher glass transition temperature (Tg). Above 80 °C, the samples were completely amorphous, and the Tg did not change. The starting material was semicrystalline, and the melting region was composed of a dual endotherm; the first peak subsided as the feed temperature increased up to a temperature of 70 °C, whereas above 80 °C, no melting peak was observed as the samples were completely amorphous. To a lesser extent, the inlet air temperature of 230 °C allowed a higher amorphous content of the samples than at 120–170 °C but induced a blow-out of the particles.  相似文献   
2.
The effect of 2,4-dichlorophenol (DCP) was studied on the fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)--water liposomes. The structure and the thermotropic phase behaviour of the liposomes was examined in the presence of DCP (DCP/DPPC molar ratio, varied from 2x10(-2) up to 1) using small- and wide-angle X-ray scattering (SAXS, WAXS) and freeze-fracture electron microscopy. The structural behaviour of the DPPC/DCP/water system was strongly dependent on the concentration of the DCP. In the pretransition range the DCP molecules (at 2x10(-2) DCP/DPPC molar ratio) induced the interdigitated phase beside the parent (gel and rippled gel) phases, locally which can be form at higher DCP concentration. When the DCP/DPPC molar ratio was increased the pretransition disappeared and the main transition was shifted to lower temperatures. In the molar ratio range from 2x10(-1) up to 5x10(-1), a coexistence of different phases was observed in the wide temperature range from 20 up to 40 degrees C. With a further increase of the DCP/DPPC molar ratio (6x10(-1) to 1) only the interdigitated gel phase occurred below 25 degrees C. A schematic phase diagram of DPPC/DCP/water system was constructed to summarise the results.  相似文献   
3.
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly.  相似文献   
4.
In aqueous solution some proteins undergo large-scale movements of secondary structures, subunits or domains, referred to as protein “breathing”, that define a native-state ensemble of structures. These fluctuations are sensitive to the nature and concentration of solutes and other proteins and are thereby expected to be different in the crowded interior of a cell than in dilute solution. Here we use a combination of wide angle X-ray scattering (WAXS) and computational modeling to derive a quantitative measure of the spatial scale of conformational fluctuations in a protein solution. Concentration-dependent changes in the observed scattering intensities are consistent with a model of structural fluctuations in which secondary structures undergo rigid-body motions relative to one another. This motion increases with decreasing protein concentration or increasing temperature. Analysis of a set of five structurally and functionally diverse proteins reveals a diversity of kinetic behaviors. Proteins with multiple disulfide bonds exhibit little or no increase in breathing in dilute solutions. The spatial extent of structural fluctuations appears highly dependent on both protein structure and concentration and is universally suppressed at very high protein concentrations.  相似文献   
5.
Combined small and wide angle X‐ray scattering (SAXS and WAXS) analysis was applied to purified biogenic silica of cultured diatom frustules and of natural populations sampled on marine tidal flats. The overall WAXS patterns did not reveal crystalline phases (WAXS domain between 0.07 to 0.5 nm) in this biogenic silica, which is in line with previous reports on the amorphous character of the SiO2 matrix of diatom frustules. One exception was the silica of the pennate species Cylindrotheca fusiformis Reimann et Lewin, which revealed wide peaks in the WAXS spectra. These peaks either indicate the presence of a yet unknown crystalline phase with a repetitive distance (d‐value ≈0.06 nm) or are caused by the ordering of the fibrous silica fragments; numerous girdle bands. The SAXS spectra revealed the size range of pores (diameter d between 3.0 and 65 nm), the presence of distinct pores (slope transitions), and structure factors (oscillation of the spectra). All slopes varied in the range of ?4.0 to ?2.5, with two clear common regions among species: d < 10 nm (slopes –4, denoted as region I and also called the Porod region), and 10.0 < d < 40.0 nm (slopes ?2.9 to ?3.8, denoted as region II). The existence of these common regions suggests the presence of comparable form (region I) and structure (region II) factors, respectively the shape of the primary building units of the silica and the geometry of the pores. Contrast variation experiments using dibromomethane to fill pores in the SiO2 matrix showed that scattering was caused by pores rather than silica particles. Electron microscopic analysis confirmed the presence of circular, elliptical, and rectangular pores ranging in size from 3 to 65 nm, determining the structure factor. The fine architecture (length/width ratio of pore diameters) and distribution of the pores, however, seemed to be influenced by environmental factors, such as the salinity of and additions of AlCl3 to the growth medium. The results indicate that diatoms deposit silica with pores <50 nm in size and are highly homologous with respect to geometry. Consequently, it is suggested that in diatoms, whether pennate or centric, the formation of silica at a nanoscale level is a uniform process.  相似文献   
6.
Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for cytoplasmic delivery of molecules into cells. Incorporation of an amphiphile of appropriate structure is needed for the stabilization and performance of these vesicles. Among the wide variety of interesting activities displayed by Pseudomonas aeruginosa dirhamnolipids (diRL), is their capacity to stabilize bilayer structures in phosphatidylethanolamine systems. In this work, X-ray scattering, dynamic light scattering, fluorescence spectroscopy and fluorescence microscopy have been used to study the structure and pH-dependent behaviour of phosphatidylethanolamine/diRL liposomes. We show that diRL, in combination with dioleoylphosphatidylethanolamine (DOPE), forms stable multilamellar and unilamellar liposomes. Acidification of DOPE/diRL vesicles leads to membrane destabilization, fusion, and release of entrapped aqueous vesicle contents. Finally, DOPE/diRL pH-sensitive liposomes act as efficient vehicles for the cytoplasmic delivery of fluorescent probes into cultured cells. It is concluded that DOPE/diRL form stable pH-sensitive liposomes, and that these liposomes are incorporated into cultured cells through the endocytic pathway, delivering its contents into the cytoplasm, which means a potential use of these liposomes for the delivery of foreign substances into living cells. Our results establish a new application of diRL as a bilayer stabilizer in phospholipid vesicles, and the use of diRL-containing pH-sensitive liposomes as delivery vehicles.  相似文献   
7.
We have undertaken a series of experiments to examine the behavior of individual components of cell membranes. Here we report an initial stage of these experiments, in which the properties of a chemically simple lipid mixture are carefully mapped onto a phase diagram. Four different experimental methods were used to establish the phase behavior of the 3-component mixture DSPC/DOPC/chol: (1) confocal fluorescence microscopy observation of giant unilamellar vesicles, GUVs; (2) FRET from perylene to C20:0-DiI; (3) fluorescence of dilute dyes C18:2-DiO and C20:0-DiI; and (4) wide angle X-ray diffraction. This particular 3-component mixture was chosen, in part, for a high level of immiscibility of the components in order to facilitate solving the phase behavior at all compositions. At 23 °C, a large fraction of the possible compositions for this mixture give rise to a solid phase. A region of 3-phase coexistence of {Lα + Lβ + Lo} was detected and defined based on a combination of fluorescence microscopy of GUVs, FRET, and dilute C20:0-DiI fluorescence. At very low cholesterol concentrations, the solid phase is the tilted-chain phase Lβ′. Most of the phase boundaries have been determined to be within a few percent of the composition. Measurements of the perturbations of the boundaries of this accurate phase diagram could serve as a means to understand the behaviors of a range of added lipids and proteins.  相似文献   
8.
Blood glucose supplies energy to cells and is critical for the human brain. Glycation of collagen, the nonenzymatic formation of glucose‐bridges, relates to diseases of aging populations and diabetics. This chemical reaction, together with its biomechanical effects, has been well studied employing animal models. However, the direct impact of glycation on collagen nano‐structure is largely overlooked, and there is a lack of ex vivo model systems. Here, we present the impact of glucose on collagen nanostructure in a model system based on abundantly available connective tissue of farm animals. By combining ex vivo small and wide‐angle X‐ray scattering (SAXS/WAXS) imaging, we characterize intra‐ and inter‐molecular parameters of collagen in decellularized bovine pericardium with picometer precision. We observe three distinct regimes according to glucose concentration. Such a study opens new avenues for inspecting the effects of diabetes mellitus on connective tissues and the influence of therapies on the resulting secondary disorders.   相似文献   
9.
- Model composites, produced using cellulose from stationary cultures of the bacterium Gluconoacetobacter xylinus and tamarind xyloglucan, were examined by wide-angle X-ray scattering (WAXS) and CP/MAS solid-state (13)C NMR spectroscopy. The dominant crystallite allomorph of cellulose produced in culture media with or without xyloglucan was cellulose I(alpha) (triclinic). The presence of xyloglucan in the culture medium reduced the cross-section dimensions of the cellulose crystallites, but did not affect the crystallite allomorph. However, when the composites were refluxed in buffer, the proportion of cellulose I(beta) allomorph increased relative to that of cellulose I(alpha). In contrast, cellulose I(alpha) remained the dominant form when cellulose, produced in the absence of xyloglucan, was then heated in the buffer. Hence the presence of xyloglucan has a profound effect on the formation of the cellulose crystallites by G. xylinus.  相似文献   
10.
Neutron spin-echo spectroscopy was used to study structural fluctuations that occur in hemoglobin (Hb) and myoglobin (Mb) in solution. Using neutron spin-echo data up to a very high momentum transfer q (∼ 0.62 Å 1), we characterized the internal dynamics of these proteins at the levels of dynamic pair correlation function and self-correlation function in the time range of several picoseconds to a few nanoseconds. In the same protein solution, data transition from pair correlation motion to self-correlation motion as the momentum transfer q increases. At low q, coherent scattering dominates; at high q, observations are largely due to incoherent scattering. The low q data were interpreted in terms of an effective diffusion coefficient; on the other hand, the high q data were interpreted in terms of mean square displacements. Comparison of data from the two homologous proteins collected at different temperatures and protein concentrations was used to assess the contributions made by translational and rotational diffusion and internal modes of motion to the data. The temperature dependence of decay times can be attributed to changes in the viscosity and temperature of the solvent, as predicted by the Stokes-Einstein relationship. This is true for contributions from both diffusive and internal modes of motion, indicating an intimate relationship between the internal dynamics of the proteins and the viscosity of the solvent. Viscosity change associated with protein concentration can account for changes in diffusion observed at different concentrations, but is apparently not the only factor involved in the changes in internal dynamics observed with change in protein concentration. Data collected at high q indicate that internal modes in Mb are generally faster than those in Hb, perhaps due to the greater surface-to-volume ratio of Mb and the fact that surface groups tend to exhibit faster motion than buried groups. Comparison of data from Hb and data from Mb at low q indicates an unexpectedly rapid motion of Hb αβ dimers relative to one another. Dynamic motion of subunits is increasingly perceived as important to the allosteric behavior of Hb. Our data demonstrate that this motion is highly sensitive to protein concentration, temperature, and solvent viscosity, indicating that great care needs to be exercised in interpreting its effect on protein function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号