首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In the past few years considerable progress regarding the knowledge of the human genome map has been achieved. As a result, attempts to use gene therapy in patients’ management are more and more often undertaken. The aim of gene therapy is to replace defective genes in vivo and/or to promote the long-term endogenous synthesis of deficient protein. In vitro studies improve the production of human recombinant proteins, such as insulin (INS), growth hormone (GH), insulin-like growth factor-1 (IGF-1) and erythropoietin (EPO), which could have therapeutic application. Unfortunately, genetic methods developed for therapeutic purposes are increasingly being used in competitive sports. Some new substances (e.g., antibodies against myostatin or myostatin blockers) might be used in gene doping in athletes. The use of these substances may cause an increase of body weight and muscle mass and a significant improvement of muscle strength. Although it is proven that uncontrolled manipulation of genetic material and/or the introduction of recombinant proteins may be associated with health risks, athletes are increasingly turning to banned gene doping. At the same time, anti-doping research is undertaken in many laboratories around the world to try to develop and refine ever newer techniques for gene doping detection in sport. Thanks to the World Anti-Doping Agency (WADA) and other sports organizations there is a hope for real protection of athletes from adverse health effects of gene doping, which at the same time gives a chance to sustain the idea of fair play in sport.  相似文献   
2.
A method is described to isolate human erythropoietin (hEPO) from plasma using an EPO-specific immunoaffinity micro well plate (IAP). The operating conditions of the method (binding, blocking and elution) were optimised to avoid isoform discrimination and cross-contamination with other glycoproteins. The overall hEPO recovery was ca. 56% and significant clean-up for plasmatic hEPO was achieved. Polyvinylpyrrolidone (PVP) was used as a blocking reagent and elution took place at pH 11.0. Under these conditions all isoforms from recombinant human EPOs (rhEPOs) and analogues were uniformly recovered guaranteeing lack of discrimination. The resulting procedure allowed isolating erythropoietin from plasma in conditions amenable to hEPO analysis by other techniques such as SDS-PAGE or IEF. Moreover, avoiding contamination with other glycosylated material allowed the identification in human plasma samples of the non-human N-glycolyl-neuraminic acid (Neu5Gc) using HPLC-FLD. Neu5Gc is present as 1–2% of the sialic acid content in rhEPO so this approach could be used to unequivocally detect abuse of rhEPOs or analogues as part of the doping control.  相似文献   
3.
Wang J  Wu M  Liu X  Xu Y 《Steroids》2011,76(14):1560-1565
Androstenedione (4-androstene-3,17-dione) is banned by the World Anti-Doping Agency (WADA) as an endogenous steroid. The official method to confirm androstenedione abuse is isotope ratio mass spectrometry (IRMS). According to the guidance published by WADA, atypical steroid profiles are required to trigger IRMS analysis. However, in some situations, steroid profile parameters are not effective enough to suspect the misuse of endogenous steroids. The aim of this study was to investigate the atypical steroid profile induced by androstenedione administration and the detection of androstenedione doping using IRMS. Ingestion of androstenedione resulted in changes in urinary steroid profile, including increased concentrations of androsterone (An), etiocholanolone (Etio), 5α-androstane-3α,17β-diol (5α-diol), and 5β-androstane-3α,17β-diol (5β-diol) in all of the subjects. Nevertheless, the testosterone/epitestosterone (T/E) ratio was elevated only in some of the subjects. The rapid increases in the concentrations of An and Etio, as well as in T/E ratio for some subjects could provide indicators for initiating IRMS analysis only for a short time period, 2-22 h post-administration. However, IRMS could provide positive determinations for up to 55 h post-administration. This study demonstrated that, 5β-diol concentration or Etio/An ratio could be utilized as useful indicators for initiating IRMS analysis during 2-36 h post-administration. Lastly, Etio, with slower clearance, could be more effectively used than An for the confirmation of androstenedione doping using IRMS.  相似文献   
4.
Recombinant protein technology represents one of the best solutions to achieve rapid, efficient, and cost-effective protein expression and purification of therapeutic proteins. Growth hormone (GH) is an excellent example of these proteins used in the therapy of hormone deficiencies. In this work, a plasmid, pRSET–TEV–rhGH, has been constructed to overexpress recombinant human GH (rhGH) by cloning its gene downstream of an N-terminal 6 × His-tagged polypeptide (43 aa) in the T7 promoter-plasmid pRSET. This polypeptide was cleavable by means of the integrated recognition site for the tobaccos etch virus (TEV) protease, resulting in an rhGH protein at an exact length and sequence. After IPTG induction, this plasmid effectively expressed TEV–rhGH protein (27 kDa) in the cytoplasm of Escherichia coli, which accumulated in the form of inclusion bodies. The 6 × His-tagged protein, with a yield of ~ 150 mg/L of culture, was purified from the cell extract using metal affinity chromatography, as shown after SDS-PAGE blue staining, and was confirmed by immunoblotting using specific commercial monoclonal antibodies. In order to detect TEV–rhGH, in ELISA and immunoblotting, specific polyclonal antibody, with high titer (~ 10− 5 fold dilution), was produced in a rabbit and purified using affinity chromatography. Preliminary tests have proved that TEV–rhGH protein and its specific purified IgG antibody could provide valuable tools for rhGH productive and diagnostic purposes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号