首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The gene coding for 18S small subunit ribosomal RNA (ssu rRNA) was sequenced in seven free-living, marine species of the sessiline peritrich genus Zoothamnium. These were Zoothamnium niveum, Zoothamnium alternans, Zoothamnium pelagicum, and four unidentified species. The ssu rRNA gene also was sequenced in Vorticella convallaria, Vorticella microstoma, and in an unidentified, freshwater species of Vorticella. Phylogenetic trees were constructed using these new sequences to test a previously published phylogenetic association between Zoothamnium arbuscula, currently in the family Zoothamniidae, and peritrichs in the family Vorticellidae. Trees constructed by means of neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods all had similar topologies. The seven new sequences of Zoothamnium species grouped into three well-supported clades, each of which contained a diversity of morphological types. The three clades formed a poorly supported, larger clade that was deeply divergent from Z. arbuscula, which remained more closely associated with vorticellid peritrichs. It is apparent that Zoothamnium is a richly diverse genus and that a much more intensive investigation, involving both morphological and molecular data and a wider selection of species, will be necessary to resolve its phylogeny. A greater amount of molecular diversity than is predicted by morphological data exists within all major clades of sessiline peritrichs that have been included in molecular phylogenies, indicating that characteristics of stalk and peristomial structure traditionally used to differentiate taxa at the generic level and above may not be uniformly reliable.  相似文献   
2.
The gene encoding 18S small subunit ribosomal RNA (ssu rRNA) was sequenced in the sessiline peritrichs Opisthonecta minima and Opisthonecta matiensis, whose free-swimming, paedomorphic trophonts resemble telotrochs. Using these new sequences, phylogenetic trees were constructed with four different methods to test a previously published association between Opisthonecta henneguyi and members of the families Vorticellidae and Astylozoidae. All trees had similar topologies, with O. minima, O. henneguyi, Vorticella microstoma, and Astylozoon enriquesi forming a well-supported, certainly monophyletic clade. On the basis of genetic evidence, genera of the families Opisthonectidae and Astylozoidae are assigned to the family Vorticellidae, which already includes some species with free-swimming morphotypes. The ssu rRNA sequence of O. matiensis places it in the family Epistylididae; its taxonomic revision will be left to another group of authors. A close association of Ophrydium versatile with members of the family Vorticellidae was confirmed, casting doubt on the validity of the family Ophrydiidae. Epistylis galea, Campanella umbellaria, and Opercularia microdiscum are confirmed as comprising an extremely distinct, monophyletic, but morphologically heterogeneous clade that is basal to other clades of sessiline peritrichs.  相似文献   
3.
Sun P  Clamp J  Xu D  Kusuoka Y  Miao W 《Protist》2012,163(1):129-142
Recent phylogenetic analyses of the peritrich genus Vorticella have suggested that it might be paraphyletic, with one Vorticella species - Vorticella microstoma grouping with the swimming peritrichs Astylozoon and Opisthonecta in a distant clade. These results were based on very limited taxon sampling and thus could not be accepted as conclusive evidence for revising the generic classification. We tested paraphyly of the genus Vorticella by making a new analysis with a broad range of samples from three continents that yielded 52 new sequences of the gene coding for small subunit rRNA. Our results, together with the available sequences in Genbank, form a comprehensive set of data for the genus Vorticella. Analyses of these data showed that Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta form a well-supported, monophyletic clade, that is distinct from and basal to the family Vorticellidae containing other species of Vorticella. Paraphyly of the genus Vorticella and family Vorticellidae was strongly confirmed by these results. Furthermore, the two clades of Vorticella identified by the SSU rRNA gene are so genetically diverse whereas the genetic distances within the one containing Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta were so slight, which marked it as a separate family that must be defined by molecular characters in the absence of unifying morphological and morphogenetic characters. An emended characterization and status of the genus Vorticella, the families Vorticellidae and Astylozoidae are presented and discussed.  相似文献   
4.
Protist diversity is currently a much debated issue in eukaryotic microbiology. Recent evidence suggests that morphological and genetic diversity might be decoupled in some groups of protists, including ciliates, and that these organisms might be much more diverse than their morphology implies. We sought to assess the genetic and morphological diversity of Carchesium polypinum, a widely distributed peritrich ciliate. The mitochondrial marker cytochrome c oxidase subunit I and the nuclear small subunit ribosomal RNA were used to examine genetic diversity. For the morphological assessment, live microscopy and Protargol staining were used. The mitochondrial marker revealed six robust, deeply diverging, and strongly supported clades, while the nuclear gene was congruent for three of these clades. There were no major differences among individuals from the different clades in any of the morphological features examined. Thus, the underlying genetic diversity in C. polypinum is greater than what its morphology suggests, indicating that morphology and genetics are not congruent in this organism. Furthermore, because the clades identified by the mitochondrial marker are so genetically diverse and are confirmed by a conserved nuclear marker in at least three cases, we propose that C. polypinum be designated as a "cryptic species complex." Our results provide another example where species diversity can be underestimated in microbial eukaryotes when using only morphological criteria to estimate species richness.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号