首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2006年   4篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   
2.
Chlorcorona bohemica (Fott) Fott was previously of uncertain taxonomic affinities. The cell to cell connections, which are one of the chief features of the colony, are composed of wall extensions from adjacent cells. The outgrowths are connected by a fine fibrous component extending from wall to wall. The structure of the wall itself and the cell to cell connections, are similar to those of Pyrobotrys, although the connections in the latter are not as elongated. In addition, the flagellar apparatus of Chlorocorona is very similar to the flagellar apparatus of Pyrobotrys, and unlike that in other Chlorophyceae examined. These features suggest that Chlorcorona is closely related to Pyrobotrys and should be referred to the family Spondylomoraceae.  相似文献   
3.
The present communication deals with the details of sexual reproduction including the process of fusion of gametes in Eudorina californica (Shaw) Goldstein (earlier described as E. indica lyengar). The present observations are compared with those on other species in which the process of fusion was recorded.  相似文献   
4.
Two species of the colonial green flagellate family Volvocaceae are worldwide in distribution yet exhibit contrasting species structure. Geographically disparate isolates of Gonium pectorale Mueller can interbreed while isolates of Pandorina morum Bory behave quite differently. More than 20 sexually isolated subpopulations occur within this species; these have been termed “syngens” (sensu Sonneborn). Because prezygotic barriers to mating cause intersyngen pairings to fail, breeding analyses cannot be used to estimate genetic relatedness among the syngens of P. morum. DNA comparisons provide an alternative method of assessing genetic relatedness. We compared the nucleotide sequence of the internal transcribed spacer (ITS) region of the nuclear ribosomal repeat among clones of P. morum and of G. pectorale. Members of syngens of P. morum with distribution restricted to one small geographical area show great similarity. Likewise, members of any syngen of worldwide distribution show near uniformity, even those from different continents. However, the ITS sequence of each syngen differs from that of other syngens. In contrast, G. pectorale, which has an ITS region that is remarkably uniform throughout the world, appears to consist of a single syngen within North America and Europe by mating tests. The molecular data are in complete conformity with previous syngen assignment. Because the latter is based on mating affinity, with two complementary mating types per syngen, the evolution of new mating type pairs appears to be the basis of microevolution in these algae. We infer that either P. morum is a more ancient species than G. pectorale or that P. morum has a less stable genome. In either case, the biogeographic distribution of certain syngens may reflect climatological changes of the past.  相似文献   
5.
We tested two competing models that could explain how differential flagellar activity leads to phototactic turning in spheroids of Volvox carteri f. weismannia (Powers) Iyengar. In one model, turning results from the flagella of anterior cells in the lighted and shadowed hemispheres beating at different frequencies. In a competing model, turning results from a change in beat direction in these flagella. Both models successfully explain phototactic steering under constant illumination, but they make different predictions when colonies are exposed to abrupt changes in light intensity. If turning is due to control of flagellar beat frequency, both progression and rotation rates will change in the same direction and with similar magnitudes. If spheroid turning is due to a change in flagellar beat direction, a decreased rate of progression will accompany an increased rate of rotation and vice versa. We used video-microscopy to observe the behavior of positively phototactic V. carteri spheroids exposed to 10× step-up and step-down stimuli. After a step-up stimulus, spheroids slow their progression and rotation by equal amounts. No significant changes are reported in these parameters after the reciprocal step-down response. These observations are consistent with the variable flagellar frequency model and inconsistent with the variable flagellar direction model for phototactic turning. Switching the direction of light stimulus by 180° results in reorientation of positively phototactic spheroids. The kinetics of this reorientation did not precisely match the predictions of either model.  相似文献   
6.
Gloeomonas is a peculiar unicellular volvocalean genus because it lacks pyrenoids in the chloroplasts under the light microscope and has two flagellar bases that are remote from each other. However, ultrastructural features of chloroplasts are very limited, and no molecular phylogenetic analyses have been carried out in Gloeomonas. In this study, we observed ultrastructural features of chloroplasts of three species of Gloeomonas and Chloromonas rubrifilum (Korshikov ex Pascher) Pröschold, B. Marin, U. Schlösser et Melkonian SAG 3.85, and phylogenetic analyses were carried out based on the combined data set from 18S rRNA, ATP synthase beta‐subunit, and P700 chl a–apoprotein A2 gene sequences to deduce the natural phylogenetic positions of the genus Gloeomonas. The present EM demonstrated that the chloroplasts of the three Gloeomonas species and C. rubrifilum SAG 3.85 did not have typical pyrenoids with associated starch grains, but they possessed pyrenoid matrices that protruded interiorly within the stroma regions of the chloroplast. The pyrenoid matrices were large and broad in C. rubrifilum, whereas those of the three Gloeomonas species were recognized in only the small protruded regions of the chloroplast lobes. The present multigene phylogenetic analyses resolved that the three species of Gloeomonas belong to the Chloromonas lineage or Chloromonadinia of the Volvocales, and Chloromonas insignis (Anakhin) Gerloff et H. Ettl NIES‐447 and C. rubrifilum SAG 3.85, both of which have pyrenoids without associated starch grains, were positioned basally to the clade composed of the three species of Gloeomonas. Therefore, Gloeomonas might have evolved from such a Chloromonas species through reduction in pyrenoid matrix size within the chloroplast and by separating their two flagellar bases.  相似文献   
7.
The ultrastructure of zoospores of Asterococcus superbus (Cienk.) Scherffel was studied to provide ultrastructural data relevant to the systematic position of the genus. Our results demonstrated that the motile cells of A. superbus were similar to those of the tetrasporalean algae, such as Tetraspora sp. and Tetrasporidium javanicum Moebius . The flagellar apparatus of A. superbus had the same clock-wise orientation of basal bodies and the V-shaped alignment of basal bodies as Tetraspora cylindrica (Wahlb.) Ag. and T. lubrica (Roth) Ag., but differed by having rhizoplasts . The motile cells of A. superbus displayed chlamydomonadal ultrastructure, similar to Chlamydomonas reinhardtii Dangeard , including the absolute configuration of the flagellar apparatus. The pyrenoid matrix in A. superbus, however , showed a large lateral invagination occupied by chloroplast stroma, a characteristic that has never been observed in Chlorophyta.  相似文献   
8.
Cryopreservation is a practical method for stabilizing the genetic content of living algae over long periods of time. Yet, Chlamydomonas reinhardtii, the algal species most often utilized in studies requiring genetically defined strains, is difficult to cryopreserve with a consistently high post-thaw viability. Work described here demonstrates that C. reinhardtii retains high viability only when cryopreserved at a low cell density. Low viability at high cell density was caused by the release of an injurious substance into the culture medium. Rapid freezing and thawing under non-cryoprotective conditions released large amounts of the injurious substance. Heat denaturation of cells prevented the release of the injurious substance, but heating did not inactivate it after it was released. Even when concentrated, the injurious substance was non-toxic to cells under normal culture conditions. Reduced viability of cells cryopreserved in the presence of the injurious substance could not be attributed to changes in the tonicity of the medium. A mutant strain of C. reinhardtii (cw10) with a greatly diminished cell wall did not release a substance that reduced the post-thaw viability of wild-type or cw10 cryopreserved cells. Cryopreservation of cw10 cells was achieved with approximately the same post-thaw viability irrespective to the cell concentration at the time of freezing. Acid treatment of the injurious substance was able to partially diminish its injurious effect on cells during cryopreservation. We propose that diminished viability of C. reinhardtii cells cryopreserved at high cell densities is caused by the enzymatic release of a cell-wall component.  相似文献   
9.
Gonium pectorale O. F. Müll. (Volvocales, Chlorophyta), a colonial 8‐ or 16‐cellular alga, is phylogenetically important as an intermediate form between isogametic unicellular Chlamydomonas and oogamous Volvox. We identified the mating‐type specific gene GpMTD1, from G. pectorale, the first homologue of Chlamydomonas reinhardtii MTD1 (CrMTD1). The GpMTD1 gene was found to be present only in the minus mating‐type locus and was expressed specifically in the gametic phase as is the case for CrMTD1, suggested to participate in development of the minus gametes. This gene is useful as a probe in analyzing the bacterial artificial chromosome (BAC) library for resolving genomic structures of the mating‐type loci in isogamous and oogamous colonial volvocaleans.  相似文献   
10.
报道了衣藻属(Chlamydomonas)的9个新种:近条纹衣藻、具孔衣藻、顶角衣藻、近环形衣藻、具粒衣藻、近具喙衣藻、不整衣藻、疣突衣藻、倒卵形衣藻,以及4个新变种:阿美衣藻大型变种、似博泡衣藻大型变种、侏儒衣藻陈氏变种和锥形衣藻胶被变种。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号