首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
  2004年   1篇
  2001年   2篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Electroporation has become a widely used method for rapidly and efficiently introducing foreign DNA into a wide range of cells. Electrotransformation has become the method of choice for introducing DNA into prokaryotes that are not naturally competent. Electroporation is a rapid, efficient, and streamlined transformation method that, in addition to purified DNA and competent bacteria, requires commercially available gene pulse controller and cuvettes. In contrast to the pulsing step, preparation of electrocompetent cells is time consuming and labor intensive involving repeated rounds of centrifugation and washes in decreasing volumes of sterile, cold water, or non-ionic buffers of large volumes of cultures grown to mid-logarithmic phase of growth. Time and effort can be saved by purchasing electrocompetent cells from commercial sources, but the selection is limited to commonly employed E. coli laboratory strains. We are hereby disseminating a rapid and efficient method for preparing electrocompetent E. coli, which has been in use by bacteriology laboratories for some time, can be adapted to V. cholerae and other prokaryotes. While we cannot ascertain whom to credit for developing the original technique, we are hereby making it available to the scientific community.  相似文献   
2.
The luminous marine bacterium Photobacterium mandapamensis was synonymized several years ago with Photobacterium leiognathi based on a high degree of phenotypic and genetic similarity. To test the possibility that P. leiognathi as now formulated, however, actually contains two distinct bacterial groups reflecting the earlier identification of P. mandapamensis and P. leiognathi as separate species, we compared P. leiognathi strains isolated from light-organ symbiosis with leiognathid fishes (i.e., ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1) with strains from seawater originally described as P. mandapamensis and later synonymized as P. leiognathi (i.e., ATCC 27561T and ATCC 33981) and certain strains initially identified as P. leiognathi (i.e., PL-721, PL-741, 554). Analysis of the 16S rRNA and gyrB genes did not resolve distinct clades, affirming a close relationship among these strains. However, strains ATCC 27561T, ATCC 33981, PL-721, PL-741 and 554 were found to bear a luxF gene in the lux operon (luxABFE), whereas ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1 lack this gene (luxABE). Phylogenetic analysis of the luxAB(F)E region confirmed this distinction. Furthermore, ATCC 27561T, ATCC 33981, PL-721, PL-741 and 554 all produced a higher level of luminescence on high-salt medium, as previously described for PL-721, whereas ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1 all produced a higher level of luminescence on low-salt medium, a characteristic of P. leiognathi from leiognathid fish light organs. These results demonstrate that P. leiognathi contains two evolutionarily and phenotypically distinct clades, P. leiognathi subsp. leiognathi (strains ATCC 25521T, ATCC 25587, lequu.1.1 and lleuc.1.1), and P. leiognathi subsp. mandapamensis (strains ATCC 27561T, ATCC 33981, PL-721, PL-741 and 554).Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   
3.
The present study aimed to address the capability of the probiotic bacterium Lactobacillus rhamnosus IMC 501® to survive in seawater and the ability of Artemia metanauplii to incorporate it, as well as to analyse the potential effect of the probiotic as a control agent for potentially pathogenic Vibrionaceae bacteria in Artemia. The results demonstrate the ability of L. rhamnosus IMC 501® to survive in seawater for up to 30 h. They also advocate their capability to be efficiently incorporated into Artemia metanauplii at concentrations of 104 CFU per Artemia after 30 min of suspension in probiotic solution, thereby promoting a 1-log reduction in Vibrionaceae levels after 3 h. These low levels of Vibrio bacteria were maintained for about 30 min after transfer into clear seawater, a sufficient time for Artemia to be ingested by aquatic organisms. These results contribute to broaden the knowledge on the suitability of probiotics as sustainable alternatives for the prevention/reduction of diseases in aquaculture facilities.  相似文献   
4.
5.
Aims: The aim of this study was to detect the production of three kinds of quorum sensing (QS) signal molecules, i.e. the N‐acyl‐homoserine lactone (AHL), the autoinducer‐2 (AI‐2) and the cholerae autoinducer‐1‐like (CAI‐1‐like) molecules in 25 Vibrionaceae strains. Methods and Results: The QS signal molecules in 25 Vibrionaceae strains were detected with different biosensors. Except Salinivibrio costicola VIB288 and Vibrio natriegens VIB299, all the other 23 Vibrionaceae strains could produce one or more kinds of detectable QS signal molecules. Twenty‐one of the 25 strains were found to produce AHL signal molecules by using Vibrio harveyi JMH612 and Agrobacterium tumefaciens KYC55 (pJZ372; pJZ384; pJZ410) as biosensors. The AHL fingerprints of eight strains were detected by thin‐layer chromatography with Ag. tumefaciens KYC55, and two of them, i.e. V. mediterranei VIB296 and Aliivibrio logei VIB414 had a high diversity of AHLs. Twenty of the 25 strains were found to have the AI‐2 activity, and the luxS gene sequences in 18 strains were proved to be conserved by PCR amplification and sequencing. Only six (five Vibrio strains and A. logei VIB414) of the 25 strains possessed the CAI‐1‐like activity. A. logei VIB414, V. campbellii VIB285, V. furnissii VIB293, V. pomeroyi LMG20537 and two V. harveyi strains VIB571 and VIB645 were found to produce all the three kinds of QS signal molecules. Conclusions: The results indicated that the QS signal molecules, especially AHL and AI‐2 molecules, were widespread in the family Vibrionaceae. Significance and Impact of the Study: In response to a variety of environmental conditions and selection forces, the family Vibrionaceae produced QS signal molecules with great diversity and complexity. The knowledge we obtained from this study will be useful for further research on the roles of different QS signal molecules in this family.  相似文献   
6.
Sialyltransferases are key enzymes for the biosynthesis of sialyl-glycoproteins and sialyl-lipids and the genes encoding sialyltransferases have been cloned from mammalian and bacterial source. In the mammalian sialyltransferase, existence of three conserved regions, named sialyl motifs, has been demonstrated. On the other hand, two short motifs, named D/E-D/E-G motif and HP motif, have been reported in the bacterial sialyltransferases very recently. From the results of multiple alignments among the sialyltransferases belonging to Glycosyltransferase family 80 and crystal structures of two reported sialyltransferases, it is clearly demonstrated that the third conserved-functional motif exists in the bacterial sialyltransferases that have been classified into Glycosyltransferase family 80 in this study.  相似文献   
7.
A broad-host-range vibriophage KVP40 originally isolated on Vibrio parahaemolyticus 1010 was restricted and modified by strains of at least five Vibrio and one Photobacterium species. 1010 was a non-restricting host. An anti-restriction mutant KVP40 aar1 was isolated after propagating the phage on a restricting host, V. anguillarum VIB36. KVP40 aar1 grown on either 1010 or VIB36, as well as the parental phage grown on VIB36, showed much higher efficiencies of plating on all the restricting hosts as compared with the parental phage grown on 1010, indicating that these restricting hosts probably share a common restriction-modification system active in vivo on KVP40.  相似文献   
8.
The genomic diversity among 506 strains of the family Vibrionaceae was analysed using Fluorescent Amplified Fragments Length Polymorphisms (FAFLP). Isolates were from different sources (e.g. fish, mollusc, shrimp, rotifers, artemia, and their culture water) in different countries, mainly from the aquacultural environment. Clustering of the FAFLP band patterns resulted in 69 clusters. A majority of the actually known species of the family Vibrionaceae formed separate clusters. Certain species e.g. V. alginolyticus, V. cholerae, V. cincinnatiensis, V. diabolicus, V. diazotrophicus, V. harveyi, V. logei, V. natriegens, V. nereis, V. splendidus and V. tubiashii were found to be ubiquitous, whereas V. halioticoli, V. ichthyoenteri, V. pectenicida and V. wodanis appear to be exclusively associated with a particular host or geographical region. Three main categories of isolates could be distinguished: (1) isolates with genomes related (i.e. with > or =45% FAFLP pattern similarity) to one of the known type strains; (2) isolates clustering (> or =45% pattern similarity) with more than one type strain; (3) isolates with genomes unrelated (<45% pattern similarity) to any of the type strains. The latter group consisted of 236 isolates distributed in 31 clusters indicating that many culturable taxa of the Vibrionaceae remain as yet to be described.  相似文献   
9.

Background

Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters.

Results

Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of these elements can help in the discovery and production of new compounds never identified under regular laboratory cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known.

Conclusions

Utilizing the rapidly developing sequencing technologies and software tools in combination with phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient, straightforward manner – an approach that will facilitate natural product discovery in the future.  相似文献   
10.
Sialyltransferases are a family of glycosyltransferases that catalyze the transfer of N-acetylneuraminic acid residues from cytidine monophosphate N-acetylneuraminic acid (CMP-NeuAc) as a donor substrate to the carbohydrate groups of glycoproteins and glycolipids as acceptor substrates. We determined the crystal structure of Delta16psp26ST, the N-terminal truncated form of alpha2,6-sialyltransferase from Vibrionaceae Photobacterium sp. JT-ISH-224, complexed with a donor product CMP and an acceptor substrate lactose. Delta16psp26ST has three structural domains. Domain 1 belongs to the immunoglobulin-like beta-sandwich fold, and domains 2 and 3 form the glycosyltransferase-B structure. The CMP and lactose were bound in the deep cleft between domains 2 and 3. In the structure, only Asp232 was within hydrogen-binding distance of the acceptor O6 carbon of the galactose residue in lactose, and His405 was within hydrogen-binding distance of the phosphate oxygen of CMP. Mutation of these residues greatly decreased the activity of the enzyme. These structural and mutational results indicated that Asp232 might act as a catalytic base for deprotonation of the acceptor substrate, and His405 might act as a catalytic acid for protonation of the donor substrate. These findings are consistent with an in-line-displacement reaction mechanism in which Delta16psp26ST catalyzes the inverting transfer reaction. Unlike the case with multifunctional sialyltransferase (Delta24PmST1) complexed with CMP and lactose, the crystal structure of which was recently reported, the alpha2,6 reaction specificity of Delta16psp26ST is likely to be determined by His123.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号