首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2886篇
  免费   365篇
  国内免费   48篇
  2024年   18篇
  2023年   87篇
  2022年   115篇
  2021年   158篇
  2020年   127篇
  2019年   127篇
  2018年   125篇
  2017年   106篇
  2016年   111篇
  2015年   126篇
  2014年   190篇
  2013年   261篇
  2012年   154篇
  2011年   182篇
  2010年   122篇
  2009年   142篇
  2008年   164篇
  2007年   167篇
  2006年   106篇
  2005年   101篇
  2004年   118篇
  2003年   74篇
  2002年   77篇
  2001年   29篇
  2000年   30篇
  1999年   52篇
  1998年   18篇
  1997年   24篇
  1996年   29篇
  1995年   20篇
  1994年   9篇
  1993年   13篇
  1992年   16篇
  1991年   8篇
  1990年   8篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有3299条查询结果,搜索用时 265 毫秒
1.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc.  相似文献   
2.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
3.
Elucidation of the pathogenesis in respiratory chain diseases is of great importance for developing specific treatments. The limitations inherent to the use of patient material make studies of human tissues often difficult and the mouse has therefore emerged as a suitable model organism for studies of respiratory chain diseases. In this review, we present an overview of the field and discuss in depth a few examples of animal models reproducing pathology of human disease with primary and secondary respiratory chain involvement.  相似文献   
4.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   
5.
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln−/−) or two key proteins (lysyl oxidase, Lox−/−, or fibulin-4, Fbln4−/−) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln−/−, Lox−/−, and Fbln4−/− ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56–97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln−/− aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53–387% in Eln−/−, Lox−/−, and Fbln4−/− aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.  相似文献   
6.
In the present work, we described the fate of proventitious epicormic buds on the trunks of 40-year-old Quercus petraea trees and in parallel the vascular trace they produced in the wood. Our results show that small and large individual epicormic buds can survive as buds for 40 years and that both are composed of a terminal meristem and scales. Meristematic areas are detected in the scale axils of small buds; in addition to these meristems the large buds also have secondary bud primordia. The small buds are connected to the pith of the main stem by a unique trace, whereas the large buds are connected by one or multiple traces. A single trace might imply that the whole bud is still alive and multiple traces might indicate that the terminal meristem has died. In the latter case, each trace is connected to a secondary bud of the large bud. The buds found in a cluster are composed of a terminal meristem and scales with axillary meristems in the scale axils. A cluster is connected to the pith of a stem either by a unique trace when it seems to be the result of partial abscission of an epicormic shoot or multiple traces when it might have originated from an epicormic bud in which the terminal meristem has died. Whatever the type of the bud, the vascular trace in the bark is composed of a cambium, secondary xylem and parenchyma cells and the trace present in the wood had parenchyma cells with vestiges of secondary xylem. Each year, the vascular trace should be produced in the bark by the cambium of the tree but not by the bud itself. On 40-year-old Q. petraea, we observed a proliferation of epicormic buds and in parallel a multiplication of the number of vascular traces in the trunk, but the knots caused by the traces of epicormic buds in the wood, either as individuals or in clusters, are minor since their colours are only slightly darker than those of woody rays and they are less than 2 mm in diameter. The knots will appear when epicormic buds develop into shoots. Received: 30 March 1999 / Accepted: 09 June 1999  相似文献   
7.
The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges.  相似文献   
8.
9.
The vascular plant distributions of Dalsland and northern Bohuslän (Southwest Sweden) were subjected to multivariate analyses in order to delimit geographically coherent floristic zones. 271 squares of 5×5 km were the Operational Geographic Units; the data matrix comprises presence/absence species records for each OGU. Different ordination and classification methods were tested and detailed results are presented for detrended correspondence analysis (DCA), UPGMA and ordination space partitioning (OSP). A weighting procedure, neighbour-weighting, which gives pseudo-frequency scores along the nominal scale 0–9 depending on the species' distribution patterns, is introduced. The superior method for delimiting geographically coherent floristic zones was judged to be ordination space partitioning, using DCA and neighbour-weighted species scores.Abbreviations DCA Detrended Correspondence Analysis - OGU Operational Geographical Unit - OSP Ordination Space Partitioning - UPGMA Unweighted Pair-Group Method using Arithmetic Averages  相似文献   
10.
Bovine BSP5 belongs to the Binder of SPerm (BSP) family. BSP5 plays a role in the bovine sperm capacitation by promoting cholesterol and phospholipid efflux. The variable N-terminal part in the BSP proteins is the uncharacterized region with no known function. Full-length, N-terminal part, and individual fibronectin type II domains of bovine BSP5 were cloned, expressed and purified from Escherichia coli. His-S tagged N-terminal part showed large variation in migration on SDS-PAGE in comparison to other constructs. Using mass spectrometry it was demonstrated that the His-S-N-terminal part has the expected molecular mass (13 kDa). The recombinant N-terminal part was sensitive to E. coli endogenous proteases during purification. Denaturing purification involving boiling lysis of cells was carried out, as the protein was thermostable. The His-S-N-terminal part lacked structure as determined by CD analysis. Bioinformatics analyses confirmed that the N-terminal part of bovine BSP5 is intrinsically disordered. In addition, bioinformatics analysis indicated that rabbit BSP and multiple forms of BSP proteins of bovine and equine species possess partially or completely disordered N-terminus. The conservation of disorder at the N-terminus in BSP members belonging to different species suggests a role in biological process such as sperm capacitation and/or sperm-egg interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号