首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   2篇
  国内免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   7篇
  2003年   1篇
  2002年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
1.
2.
Incubation of vesicular stomatitis virus-infected glucose-starved baby hamster kidney cells with [35S]methionine results in the synthesis of all viral proteins. However, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic peptide mapping, the G protein is abnormally glycosylated. Metabolic labeling of the oligosaccharide-lipid precursors with [3H]mannose for 15 min, followed by Chromatographic and enzymatic analysis, indicates that the radiolabeled lipid-linked oligosaccharides are devoid of glucose in contrast to the glucosylated oligosaccharide-lipids synthesized by cells grown in the presence of glucose. Also, in contrast to control cells, examination of the glycopeptide fraction reveals the presence of [3H]mannose-labeled glycopeptides which are resistant to erado-β-N-acetylglucos-aminidase H and are smaller in size than glycopeptides from mature vesicular stomatitis virus. In order to observe these effects, a minimum time of 5 h of glucose deprivation is necessary and the addition of 55 μm glucose or mannose to the medium reverses these effects. These results indicate that vesicular stomatitis virus-infected BHK cells deprived of glucose are unable to glucosylate the oligosaccharide-lipid intermediates and, consequently, are unable to glycosylate the G protein normally.  相似文献   
3.
A R Davis  T Bos  M Ueda  D P Nayak  D Dowbenko  R W Compans 《Gene》1983,21(3):273-284
Cloned DNA fragments coding for parts of strain WSN (H1N1) influenza virus hemagglutinin (HA) were fused to a bacterial leader DNA derived from the Escherichia coli trp operon. Fusion proteins produced consisted of 190 amino acids of trpLE' protein at the amino terminus, and HA amino acids, either 1-308, 1-396, or 1-548 (complete HA), at the carboxyl terminus. These proteins were expressed at high levels (10-20% of total protein) in E. coli starved for tryptophan. A CNBr fragment (HA1-211) was derived from HA-308. Each of the proteins was purified and used for immunizing mice and rabbits. The antibody produced was shown to bind to (i) the HA fusion proteins, (ii) detergent-treated viral HA, (iii) HA, on intact virions, and (iv) the HA on the surface of cells infected with influenza virus. This shows that the HA fusion proteins expressed in bacteria can elicit antibodies that recognize at least some determinants of the native viral HA, and probably could lead to development of an anti-influenza vaccine.  相似文献   
4.
Monensin blocks endocytosis of vesicular stomatitis virus   总被引:8,自引:0,他引:8  
Monensin inhibits the infection of mouse cells by Vesicular Stomatitis Virus (VSV). At low drug concentrations (0.5 μM), endocytosis of VSV is inhibited whereas viral binding is unaffected. Monensin may be useful for analyzing the internalization of other viruses as well as soluble ligands.  相似文献   
5.
2-Fluoro-L-Histidine inhibits protein synthesis in various cell cultures, as measured by 3H-leucine incorporation. This histidine analog also inhibits the cytopathogenicity of a number of RNA and DNA viruses in primary and continuous cell cultures; it blocks the transformation of normal mouse (MO) cells by murine sarcoma virus, and partially suppresses the release of murine leukemia virus by a continuously infected mouse cell line (JLSV5). In human skin fibroblasts, it reduces the interferon-inducing capacity of poly(I)·poly(C). Inhibition of cell protein synthesis may be the common cause of the various effects. 4-Fluoro-L-histidine is essentially inert in all of the test systems examined.  相似文献   
6.
BACKGROUND: Semliki Forest virus (SFV) vectors have a great potential for the induction of protective immunity in a large number of clinical conditions including cancer. Such a potential accounts for the huge efforts made to improve the in vivo expression from SFV vectors. It is noteworthy that efficient in vivo expression strongly relies on the ability to deliver high-titre vectors. To achieve this, the generation of recombinant SFV particles, using independent expression systems for structural SFV genes, has been proposed. However, despite several modifications in the production process, a risk of contamination with replication-competent, or partially recombined, virus has remained. METHODS: Here, we exploit the ability of the vesicular stomatitis virus glycoprotein (VSV-G), expressed in trans, to hijack full-length genomic SFV RNA into secreted virus-like particles (VLPs). To allow SFV vector mobilisation, we designed a CMV driven SFV vector in which the internal 26S promoter has been extensively mutated. With this vector, mobilisation events were monitored using the Green Fluorescent Protein (GFP). The production procedure involves a sequential transfection protocol, of plasmids expressing the VSV-G and the SFV vector respectively. RESULTS: We show that the VLPs are effective for cellular delivery of SFV vectors in a broad range of human and non-human cellular targets. Furthermore, production of VLPs is easy and allows, through concentration, the harvest of high-titre vector. CONCLUSIONS: The present paper describes a convenient process aimed at mobilising full length SFV vectors. A major issue to consider, while developing clinically relevant gene transfer vectors, is the risk of undesirable generation of replication competent by-products. Importantly, as the VSV-G gene shares no homology with the SFV genome, our VLPs offer a strong guarantee of biosafety.  相似文献   
7.
Muller's ratchet is a principle of evolutionary genetics describing mutant accumulation in populations that are repeatedly subjected to genetic bottleneck. The immediate effect of Muller's ratchet, overall loss of fitness, has been confirmed in several viral systems belonging to different groups. This report shows that in addition to fitness loss, genetic bottlenecks also have longer-term effects, namely changes in the capacity of viral populations to adapt. Thus, vesicular stomatitis virus strains with a history of genetic bottleneck have lower adaptability than strains maintained at relatively large population sizes. This lower adaptability is illustrated by their reduced ability to regain fitness and by their inability to outcompete wild-type populations in situations where the initial fitness of the bottlenecked mutant is the same or even higher than the initial fitness of the wild-type.  相似文献   
8.
9.
Wia Baron  Dick Hoekstra 《FEBS letters》2010,584(9):1760-12632
In the central nervous system, a multilayered membrane layer known as the myelin sheath enwraps axons, and is required for optimal saltatory signal conductance. The sheath develops from membrane processes that extend from the plasma membrane of oligodendrocytes and displays a unique lipid and protein composition. Myelin biogenesis is carefully regulated, and multiple transport pathways involving a variety of endosomal compartments are involved. Here we briefly summarize how the major myelin proteins proteolipid protein and myelin basic protein reach the sheath, and highlight potential mechanisms involved, including the role of myelin specific lipids and cell polarity related transport pathways.  相似文献   
10.
We have shown previously that Rab6, a small, trans-Golgi-localized GTPase, acts upstream of the conserved oligomeric Golgi complex (COG) and ZW10/RINT1 retrograde tether complexes to maintain Golgi homeostasis. In this article, we present evidence from the unbiased and high-resolution approach of electron microscopy and electron tomography that Rab6 is essential to the trans-Golgi trafficking of two morphological classes of coated vesicles; the larger corresponds to clathrin-coated vesicles and the smaller to coat protein I (COPI)-coated vesicles. On the basis of the site of coated vesicle accumulation, cisternal dilation and the normal kinetics of cargo transport from the endoplasmic reticulum (ER) to Golgi followed by delayed Golgi to cell surface transport, we suggest that Golgi function in cargo transport is preferentially inhibited at the trans-Golgi/trans-Golgi network (TGN). The >50% increase in Golgi cisternae number in Rab6-depleted HeLa cells that we observed may well be coupled to the trans-Golgi accumulation of COPI-coated vesicles; depletion of the individual Rab6 effector, myosin IIA, produced an accumulation of uncoated vesicles with if anything a decrease in cisternal number. These results are the first evidence for a Rab6-dependent protein machine affecting Golgi-proximal, coated vesicle accumulation and probably transport at the trans-Golgi and the first example of concomitant cisternal proliferation and increased Golgi stack organization under inhibited transport conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号