首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2006年   3篇
  2004年   2篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Considering the putative neuroprotective role of the vasoactive intestinal peptide (VIP) and the pituitary adenylyl cyclase-activating polypeptide (PACAP), we investigated the acute modulation of glial glutamate uptake by the structurally related peptide histidine isoleucine (PHI). Using cultures of cortical astrocytes, we demonstrated that a 6 min treatment with 1 μmol/L PHI strongly increased the d -[3H]-aspartate uptake velocity from 24.3 ± 1.9 to 46.8 ± 3.5 nmol/mg prot/min. This effect was found to reflect an increase in the activity of the GLAST, the predominant functional glutamate transporter in these cultures. The combination of protein kinase A and C inhibitors was effective in blocking the effect of PHI and the use of peptide antagonists contributed to demonstrate the implication of the VIP/PACAP type 2 receptor (VPAC2). Accordingly, G-protein activation measures and gene reporter assays revealed the expression of functional PHI-sensitive receptors in cultured astrocytes. Biotinylation/immunoblotting studies indicated that PHI significantly increased the cell surface expression of the GLAST (by 34.24 ± 8.74 and 43.00 ± 6.36%, when considering the 72 and 55 kDa immunoreactive proteins, respectively). Such cross-talk between PHI and glutamate transmission systems in glial cells opens attractive perspectives in neuropharmacology.  相似文献   
2.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   

3.
VPAC2在CHO细胞的表达及鉴定   总被引:1,自引:0,他引:1  
PAC2是垂体腺苷酸环化酶激活多肽(Pituitary adenylate cyclase activating polypeptide,PACAP)和血管活性肠肽(vasoactive intestinal peptide,VIP)的共同受体,介导多种重要生物学功能。为获得稳定特异表达VPAC2的中国仓鼠卵巢(Chinesehamsterovary,CHO)细胞,将pcDNA-VPAC2表达载体转染CHO细胞,G418筛选转染阳性克隆,PACAP38标准品诱导阳性克隆细胞的胞内cAMP生成,筛选出对PACAP38最为敏感的阳性单克隆细胞株(VPAC2-CHO),运用RT-PCR、Westernblot和免疫荧光法检测VPAC2受体表达情况,利用VPAC2受体特异激动剂通过竞争性结合试验和促进胞内第二信使cAMP生成的活性检测实验证实,VPAC2-CHO特异表达有功能的VPAC2。Scatchard作图分析显示VPAC2-CHO的VPAC2受体密度为(1.1±0.2)pmol/mg膜蛋白,PACAP38与VPAC2的解离常数Kd值为(0.55±0.10)nmol/L。特异表达VPAC2受体细胞系的构建为深入研究该受体理化性质、生物学功能以及筛选、开发VPAC2受体新型特异激动剂和拮抗剂等研究奠定了基础。  相似文献   
4.
In order to develop potent shortened analogues of vasoactive intestinal peptide (VIP), the structure-activity relationship of C-terminally truncated analogues of VIP was investigated by examining the binding activity to rat lung VIP receptors and relaxation of smooth muscle in isolated mouse stomach. VIP(1-27) showed VIP receptor binding activity comparable to that of VIP but the activity of VIP(1-26) was reduced to one-third of VIP. The receptor binding activity of VIP(1-26) to VIP(1-23) was reduced in proportion to the decrease in amino acid residues. There was a significant correlation between the number of amino acid residues and VIP receptor binding activities of VIP and its C-terminally truncated analogues. VIP(1-22) and VIP(1-21) exhibited little binding activity even at high concentrations, suggesting the requisite of 23 amino acid residues as the minimal essential sequence for the conservation of VIP receptor binding activity. The chemical modification of VIP(1-23) generated a potent analogue, [Arg(15, 20, 21), Leu(17)]-VIP(1-23), that displayed a 22-fold higher receptor binding activity and 1.6-fold more potent relaxation of mouse stomach than VIP(1-23) did. In conclusion, it was shown that [Arg(15, 20, 21), Leu(17)]-VIP(1-23) could be a relatively potent and stable agonist of VIP receptors. The present study has provided further insight into the structure-activity relationship of VIP to generate novel shortened VIP analogues having a high affinity to VIP receptors and potent pharmacological activity.  相似文献   
5.
Using a monoclonal antibody interacting with the extracellular amino-terminus of the human VPAC2 receptor but that did not interfere with ligand binding, we measured by flow cytometry receptor internalization and trafficking induced by full agonists, partial agonists and an antagonist in Chinese hamster ovary cells expressing the recombinant receptor. The agonists, but not the antagonist, induced a rapid, dose-dependent receptor internalization blocked by hypertonic sucrose that was more pronounced for the VIP analog N-hexanoyl-VIP (80%) than for VIP and Ro 25-1553 (50%) and the [A11]-VIP (20%). Re-expression of the receptors at the membrane was achieved within two hours after exposure to VIP and Ro 25-1553 was blocked by 25 μM monensin but not by 10 μg/ml cycloheximide. Re-expression was much slower after exposure to the acylated peptide and was blocked by preincubation with 25 μM monensin and 10 μg/ml cycloheximide.  相似文献   
6.
Distinct roles of the two T cell G protein-coupled receptors for vasoactive intestinal peptide (VIP), termed VPAC1 and VPAC2, in VIP regulation of autoimmune diseases were investigated in the dextran sodium sulfate (DSS)-induced murine acute colitis model for human inflammatory bowel diseases. In mice lacking VPAC2 (VPAC2-KO), DSS-induced colitis appeared more rapidly with greater weight loss and severe histopathology than in wild-type mice. In contrast, DSS-induced colitis in VPAC1-KO mice was milder than in wild-type mice and VPAC2-KO mice. Tissues affected by colitis showed significantly higher levels of myeloperoxidase, IL-6, IL-1β and MMP-9 in VPAC2-KO mice than wild-type mice, but there were no differences for IL-17, IFN-γ, IL-4, or CCR6. Suppression of VPAC1 signals in VPAC2-KO mice by PKA inhibitors reduced the clinical and histological severity of DSS-induced colitis, as well as tissue levels of IL-6, IL-1β and MMP-9. Thus VIP enhancement of the severity of DSS-induced colitis is mediated solely by VPAC1 receptors.  相似文献   
7.
Type 2 diabetes is characterized by an inadequate pancreatic beta-cell response to the progressive insulin resistance. Its pathogenesis is complex and has been connected with a state of preclinical chronic inflammation. Vasoactive intestinal peptide (VIP) and its receptors play a relevant role in the homeostasis of insulin secretion as well as in the control of inflammation. In particular, VIP receptor 1 (VPAC1) has been found to be down-modulated during inflammation, and to be associated with several diseases. The objective of this study was to compare the distribution of SNPs mapping in the VIP receptor 1 gene in cases with type 2 diabetes and matched controls. Seven hundred cases with type 2 diabetes (423 males and 277 females) and 830 random controls (419 males and 411 females) were analyzed for the distribution of three common SNPs mapping in the VPAC1 gene. The results show a significantly different genotype distribution of the SNP rs9677 in the 3’-UTR of VPAC1 in female cases with type 2 diabetes compared to gender-matched controls (ptrend = 6 × 10− 4). The rs9677 CC genotype confers the highest risk (OR: 2.1) and correlates with worse clinical parameters such as higher level of total cholesterol, higher LDL/HDL ratio and a higher HbA1c concentration. The genetic association reported here indicates that VIP/VPAC1 signaling can be a relevant pathway in the pathogenesis of type 2 diabetes in females suggesting that at least some aspects of the genetic predisposition to this disease can be gender-specific.  相似文献   
8.
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced αCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced αCGRP binding. These residues form a hydrophobic cluster within an area defined as the “minor groove” of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of αCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on αCGRP binding and cAMP production; they are likely to indirectly influence the binding site for αCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired αCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.  相似文献   
9.
Since numerous tumor cells overexpress the vasoactive intestinal peptide (VIP) receptor subtype 1 (VPAC(1)), VIP-dye conjugates would be useful as contrast agents for in vivo imaging. However, proteolytic degradation of VIP in vivo limits their diagnostic use and highlights the need for structurally optimized VIP derivatives with improved pharmacokinetics. Here, we applied parallel nano-synthesis of cleavable peptides on cellulose membranes to perform a complete VIP substitutional analysis. The resulting 504 different VIP-dye analogs were tested for cell binding by flow cytometry. They provided a detailed analysis of amino acid positions essential for binding to VPAC(1) overexpressing cells. A generalized VIP-dye binding motif derived from the substitutional analysis results served as a reference point for further optimization. An [Arg8]-VIP-dye analog showed increased stability towards proteolytic degradation, good tumor-to-tissue contrast in mice and a longer half-life in vivo.  相似文献   
10.
利用DNA重组、原核表达、Chitin-Beads柱和HPLC纯化、质谱鉴定等技术,制备了一种新型具有抗2型糖尿病功能的VPAC2受体激动剂RD,并初步研究和揭示了其在Ⅱ型糖尿病治疗中有效促进胰岛素信号传导的分子机制。实验结果表明:利用基因重组技术制备的VPAC2受体激动剂RD的分子量为3 785.0 Da,纯度为96%;将重组肽作用于正常或胰岛素抵抗的3T3-L1 脂肪细胞(IR模型细胞),1和5μmol/L 重组肽RD可促进正常3T3-L1脂肪细胞IRS-1 蛋白的表达(分别增加36%和42%),而促进IR模型细胞IRS-1 蛋白的表达增加更为明显(分别增加55%和63%)。IR模型细胞经1,5和10μmol/L重组肽RD处理后,pIRS1(ser307)的表达水平分别比降低了5.9%,10.7%和32.7%。在IR模型细胞中,5和10μmol/L RD处理组,IRS-2蛋白的表达水平分别降低12.8%和40.6%;而1,5和10μmol/L RD各处理组pIRS2蛋白的表达水平分别降低35.1%,40.8%和48.5%。5 and 10μmol/L RD处理的IR模型细胞中Akt蛋白的表达显著增强,表达量分别增加74%和77%。1,5 和10μmol/L的重组肽RD处理的IR模型细胞中,Akt Ser473磷酸化水平分别降低33.9%,64.0%和71.1%;Akt Thr308磷酸化水平分别升高13.5%,78.6%和83.3%。建立了重组VPAC2受体激动剂RD的制备技术,并在体外细胞水平检测了其效果(显著促进正常3T3-L1脂肪细胞及IR模型细胞IRS-1 蛋白的表达;降低IR模型细胞pIRS1(ser307),IRS-2,pIRS2蛋白的表达;促进IR模型细胞Akt蛋白的表达及Akt Thr308磷酸化水平等),为阐明其在2型糖尿病治疗中的分子作用机制及药用研发提供了实验基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号