首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   5篇
  国内免费   6篇
  300篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   10篇
  2011年   17篇
  2010年   4篇
  2009年   2篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   5篇
  1994年   12篇
  1993年   10篇
  1992年   6篇
  1991年   3篇
  1990年   10篇
  1989年   5篇
  1988年   11篇
  1987年   3篇
  1986年   3篇
  1985年   19篇
  1984年   46篇
  1983年   10篇
  1982年   11篇
  1981年   4篇
  1980年   6篇
  1979年   7篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
1.
Summary Both carotid bodies from 26 patients coming to necropsy were fixed in 10% neutral buffered formalin and sections 4 m thick were stained for various peptides by use of the immunogold technique. The results show that the human carotid body contains met- and leu-enkephalin, substance P, vasoactive intestinal peptide (VIP), neurotensin and bombesin. The distribution of these six peptides within the carotid body differs. Thus met- and leu-enkephalin are both present predominantly within glomic chief cells but with a marked tendency to favour the dark variant of these cells. Substance P and VIP both show a weak immunoreactivity in comparison to the enkephalins and are present in all three variants of chief cell. Neurotensin shows the weakest immunoreactivity of all and is restricted to a few glomic chief cells in a minority of cases. Bombesin also shows a weak immunoreactivity in glomic chief cells but a strong reaction in glomic arteries and arterioles. In these vessels bombesin appears to be confined to smooth muscle cells in the media but we cannot say whether it is secreted by them or merely bound to receptor sites on their membranes. These findings are related to quantitative data on the concentration of peptides in the human carotid body from a previous paper with which we were associated.  相似文献   
2.
Summary In saltwater-acclimated ducks with fully specialized supraorbital salt glands, intracarotid application of acetylcholine (5 nmoles/min/kg b.w.) or porcine vasoactive intestinal polypeptide (pVIP) (240 pmoles/min/kg b.w.) induced secretion from the salt glands at threshold conditions of secretory activity. pVIP-like immunoreactivity could be localized in fibers of the postganglionic secretory nerve ramifying throughout the glandular parenchyma. Both middle-sized arterioles and secretory tubules were innervated, and pVIP-immunoreactive varicose fibers formed peritubular baskets around the basal region of secretory tubules indicating direct innervation of the secretory tissue. pVIP-specific staining could be abolished by preabsorption of the antiserum with peptide extracts of salt-gland tissue. Synthetic pVIP and endogenous VIP from salt glands of the duck co-eluted on the HPLC system, suggesting structural similarity of the peptides. Membrane-binding studies with radioiodinated pVIP revealed the presence of high-affinity binding sites in salt-gland tissue. Affinities of unlabeled pVIP analogues to compete for these binding sites were as follows: pVIP > PHI > pVIP antagonist > secretin > pVIP (10–28) > chicken VIP (16–28). Peptide extracts of salt glands had affinities similar to pVIP. Binding sites could be localized mainly at the apical end of the radially arranged secretory tubules, as demonstrated by receptor autoradiography.It is concluded that, in addition to the classical parasympathetic transmitter acetycholine, VIP serves as neuromodulator/transmitter in cranial parasympathetic control of avian salt-gland secretion by acting on both the arteriolar network and the secretory tubules of the gland.  相似文献   
3.
Summary The ontogeny of substance P, CGRP (calcitonin gene-related peptide), and VIP (vasoactive intestinal polypeptide) containing nerve fibers in the carotid labyrinth of the bullfrog, Rana catesbeiana, was examined by the peroxidase-antiperoxidase method. The time of appearance of these three peptides was different for each. First, CGRP fibers appeared in the wall of the carotid arch and external carotid arteries, and in a thin septum between these two arteries at an early stage of larval development (stage III). At stage V, substance P immunoreactive fibers appeared, and VIP fibers were detected at the early metamorphic stage (stage XXII). Up to the completion of metamorphosis, the number of these fibers remained low. From 1 to 5 weeks after metamorphosis, substance P, CGRP, and VIP fibers increased in number to varying degrees. By 8 weeks after metamorphosis, the distribution and abundance of these fibers closely resembled those of the adults. Some CGRP and VIP immunoreactive glomus cells were found at the stages immediately before and after the completion of metamorphosis. These findings suggest that substance P, CGRP, and VIP fibers during larval development and metamorphosis may be nonfunctional, and start to participate in vascular regulation only after metamorphosis. The transient CGRP and VIP in some glomus cells may be important for the development of the labyrinth, or may take part in vascular regulation through the close apposition of the glomus and smooth muscle cells (g-s connection).  相似文献   
4.
GH3 cells can be used effectively to study the in vitro mechanism of action of GRF. In these cells, there is a time and concentration-dependent release of cAMP into the medium. Rat hypothalamic GRF, (rGRF) is 7 to 10 fold more active than human hypothalamic GRF (hGRF). VIP, a peptide which is structurally homologous to GRF, stimulates cAMP efflux in GH3 cells, with a higher affinity than hGRF or rGRF. We propose that in contradistinction to the normal rat pituitary, the stimulation of cAMP release by GRF in GH3 cells occurs via activation of VIP-preferring receptors and that GRF (rGRF in particular) behaves as a partial VIP agonist.  相似文献   
5.
Intracerebroventricular administration of vasoactive intestinal peptide (VIP) shortened the duration of pentobarbital-induced sleep and produced significant hypermotility in the rat. Although hypermotility induced by methamphetamine was not potentiated by central administration of VIP, L-DOPA-induced hypermotility in pargyline-pretreated rats was markedly enhanced by VIP and this hypermotility was suppressed by simultaneous administration of cholecystokinin octapeptide (CCK-8) in a dose-related manner. Apomorphine-induced hypermotility was also potentiated by VIP. These results suggest that VIP may stimulate postsynaptic dopaminergic receptor, causing an increase in motility, and that a possible reciprocal interaction exists between VIP and CCK-8.  相似文献   
6.
Bovine t hymic peptide extract (1–100 g/ml) is shown to completely inhibit the binding of [125I]VIP to rat blood mononuclear cells, lymphoid cells of spleen, and liver plasma membranes. In the three models, the bovine thymic peptide extract inhibits [125I]VIP binding with a potency that is 4000–7000 times lower than that of the native VIP, on a weight basis. In rat liver plasma membranes, the bovine thymic peptide extract stimulates adenylate cyclase with a maximal efficiency that is similar to that of VIP. At maximal doses, VIP and thymic peptide extract do not exert an additive effect on adenylate cyclase, suggesting that the activation of the enzyme by the bovine thymic peptide extract occurs through VIP receptors. Finally, no VIP-like immunoreactivity was detected in the thymic peptide extract using an antiserum raised against mammalian VIP. All these data suggest the presence in the bovine thymic peptide extract of a new substance which behaves as a VIP agonist in rat.  相似文献   
7.
Synthetic human pancreatic growth hormone-releasing factor containing 40 amino acids ([hpGRF (1-40)]-OH) significantly stimulated plasma growth hormone (GH) levels in both sodium pentobarbital and urethane anesthetized rats. Synthetic secretin, gastric inhibitory polypeptide (GIP), and glucagon significantly decreased plasma GH levels while synthetic vasoactive intestinal peptide (VIP) had no effect. Secretin and GIP also altered the in vivo plasma GH response to [hpGRF(1-40)]-OH. Whether this effect is the result of an interaction at the pituitary level or is due to an extra-pituitary effect of secretin and GIP awaits further study.  相似文献   
8.
Abstract: Adenylate cyclase in microvessels isolated from rat cerebral cortex was stimulated by guanine nucleotides, catecholamines, prostaglandin E1, prostaglandin E2, and 2-chloroadenosine. Catecholamine stimulation was mediated by interaction with β-adrenergic receptors. The order of relative potency was: isoproterenol > epinephrine > norepinephrine. Activation of microvessel adenylate cyclase by prostaglandins E1 and E2 as well as by 2-chloroadenosine was dose related. Twenty-two peptides were tested for possible effects on the microvessel adenylate cyclase. Only vasoactive intestinal polypeptide (VIP) was stimulatory. No inhibitory action was observed. Activation by VIP required guanosine triphosphate and was dose dependent from 10 n M to μ M (ED50= 0.1 μ M ). At 30°C, stimulation of adenylate cyclase by the peptide increased linearly with time for up to 15 min. The effect of VIP was not inhibited by phentolamine or propranolol, suggesting that its action was not elicited by interaction with α- or β-adrenergic receptors. Activation achieved by VIP and isoproterenol, prostaglandin E1, or 2-chloroadenosine was the sum of the individual stimulations, suggesting that receptors for VIP were distinct from those for isoproterenol, prostaglandin E1, and 2-chloroadenosine.  相似文献   
9.
The tissue content of up to eight neuropeptides, viz bombesin (BOM), cholecystokinin (CCK-8), neurotensin (NT), neuropeptide Y (NPY), peptide histidine isoleucine amide (PHI), somatostatin (SRIF), substance P (SP) and vasoactive intestinal polypeptide (VIP), in rat hypothalami removed at various times of the day, was measured using specific radioimmunoassays. There was significant variation in the content of BOM, CCK-8, NT, PHI, SP and VIP across a 24-h period. The levels of BOM, CCK-8 and NT were lowest around the onset of darkness (1900 h) and rose throughout the night to reach a peak around the time of lights on. Hypothalamic content of all eight peptides fell between 0700 h and 1300 h by an average of 45 +/- 4%. Basal release of these peptides, as well as that in the presence of 48 mM potassium (K+), was measured from hypothalami removed between 0700 and 1900 h and incubated in vitro in a CSF-like medium. Basal secretion of NT significantly increased, whilst that of CCK-8 significantly decreased over the same period. There was no significant change in the basal release of the other neuropeptides. The release in the presence of 48 mM K+ of SP decreased significantly during the day, whilst that of VIP significantly increased. There was also a significant change in the stimulated release of BOM, levels falling during the morning and rising again at 1900 h. 48 mM K+ caused a significant increase in the release of SRIF and SP at all times tested. Whilst 48 mM K+ induced a significantly higher release of CCK-8 and NT in the morning, this stimulus was ineffective in the evening. The contrary was true in the case of BOM, NPY and VIP, where a significant stimulation was induced only at 1900 h. The possible implications of these findings are discussed.  相似文献   
10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号