首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
  国内免费   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1979年   2篇
  1973年   1篇
排序方式: 共有36条查询结果,搜索用时 62 毫秒
1.
Depleted mucosal antioxidant defences in inflammatory bowel disease   总被引:16,自引:0,他引:16  
Experimental approaches designed to define the role of reactive oxygen and nitrogen species generated by inflammatory cells in the tissue injury seen in inflammatory bowel disease rarely consider the chemical antioxidant defences against such increased oxidant stress in the mucosa. In this investigation, we have analysed components of the aqueous and lipid phase antioxidant mucosal defences by measuring the total peroxyl radical scavenging capacity and the levels of urate, glutathione, -tocopherol, and ubiquinol-10 in paired noninflamed and inflamed mucosal biopsies from inflammatory bowel disease patients. Compared to paired noninflamed mucosa, decreases were observed in inflamed mucosa for total peroxyl radical scavenging capacity (55%, p = 0.0031), urate [Crohn's disease (CD), 62.2%, p = 0.066; ulcerative colitis (UC), 47.3%, p = 0.031], glutathione (UC, 59%, 7/8 patients, ns), total glutathione (UC 65.2%, 6/8 patients, ns), ubiquinol-10 (CD, 75.7%, p = 0.03; UC, 90.5%, p = 0.005). The mean -tocopherol content was unchanged. These observations support our earlier findings of decreased reduced and total ascorbic acid in inflamed IBD mucosa and demonstrate that the loss of chemical antioxidant defences affects almost all the major components. The decreased antioxidant defences may severely compromise the inflamed mucosa, rendering it more susceptible to oxidative tissue damage, hindering recovery of the mucosa and return of epithelial cell layer integrity. The loss of chemical antioxidant components provides a strong rationale for developing novel antioxidant therapies for the treatment of inflammatory bowel disease.  相似文献   
2.
3.
It is hypothesized that hyperuricemia in males is caused by androgen-induced urate reabsorptive transport system in the kidney. The expression of urate transporter 1 (Urat1), sodium-coupled monocarboxylate transporter 1 (Smct1) and glucose transporter 9 (Glut9) were investigated in orchiectomized mice with or without testosterone replacement. Testosterone enhanced mRNA and protein levels of Smct1 while those of Glut9 were attenuated. Although the mRNA level of Urat1 was enhanced by testosterone, the corresponding levels of Urat1 protein remained unaffected. Thus, the induction of Smct1 by testosterone is a candidate mechanism underlying hyperuricemia in males.  相似文献   
4.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   
5.
Recent genome-wide association studies showed that serum uric acid (SUA) levels relate to ABCG2/BCRP gene, which locates in a gout-susceptibility locus revealed by a genome-wide linkage study. Together with the ABCG2 characteristics, we hypothesized that ABCG2 transports urate and its dysfunction causes hyperuricemia and gout. Transport assays showed ATP-dependent transport of urate via ABCG2. Kinetic analysis revealed that ABCG2 mediates high-capacity transport of urate (Km: 8.24 ± 1.44 mM) even under high-urate conditions. Mutation analysis of ABCG2 in 90 Japanese hyperuricemia patients detected six nonsynonymous mutations, including five dysfunctional variants. Two relatively frequent dysfunctional variants, Q126X and Q141K, were then examined. Quantitative trait locus analysis of 739 Japanese individuals showed that Q141K increased SUA as the number of minor alleles of Q141K increased (p = 6.60 × 10?5). Haplotype frequency analysis revealed that there is no simultaneous presence of Q126X and Q141K in one haplotype. Becuase Q126X and Q141K are assigned to nonfunctional and half-functional haplotypes, respectively, their genotype combinations are divided into four functional groups. The association study with 161 male gout patients and 865 male controls showed that all of those with dysfunctional ABCG2 increased the gout risk, especially those with ≤1/4 function (OR, 25.8; 95% CI, 10.3–64.6; p = 3.39 × 10?21). These genotypes were found in 10.1% of gout patients, but in only 0.9% of control. Our function-based clinicogenetic (FBCG) analysis showed that combinations of the two dysfunctional variants are major causes of gout, thereby providing a new approach for prevention and treatment of the gout high-risk population.  相似文献   
6.
This work describes molecular dynamics (MD) simulations in aqueous media for the complex of the homotetrameric urate oxidase (UOX) from Aspergillus flavus with xanthine anion ( 5 ) in the presence of dioxygen (O2). After 196.6 ns of trajectory from unrestrained MD, a O2 molecule was observed leaving the bulk solvent to penetrate the enzyme between two subunits, A/C. From here, the same O2 molecule was observed migrating, across subunit C, to the hydrophobic cavity that shares residue V227 with the active site. The latter was finally attained, after 378.3 ns of trajectory, with O2 at a bonding distance from 5 . The reverse same O2 pathway, from 5 to the bulk solvent, was observed as preferred pathway under random acceleration MD (RAMD), where an external, randomly oriented force was acting on O2. Both MD and RAMD simulations revealed several cavities populated by O2 during its migration from the bulk solvent to the active site or backwards. Paying attention to the last hydrophobic cavity that apparently serves as O2 reservoir for the active site, it was noticed that its volume undergoes ample fluctuations during the MD simulation, as expected from the thermal motion of a flexible protein, independently from the particular subunit and no matter whether the cavity is filled or not by O2.  相似文献   
7.
The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.  相似文献   
8.
It has been reported that the transport function for organic anions on the kidney is maintained in multidrug resistance-associated protein 2 (Mrp2)-deficient rats. Different from Mrp2-deficient rats, Long-Evans Cinnamon (LEC) rats have impaired urinary excretion of Mrp2-substrate, phenolsulfonphthalein (PSP). PSP is transported by the potential-sensitive urate transport system in rat brush-border membranes. We analyzed the function of PSP transport system in LEC rats. Unlike Long-Evans Agouti (LEA) rats, the initial uptake of PSP and urate into the renal brush-border membrane vesicles of LEC rats were not significantly enhanced in the presence of positive intravesicular potential, suggesting that the potential-sensitive urate transport system is impaired in LEC rats. LEC rats should be useful for elucidating the potential-sensitive urate transport system in rats at the molecular level.  相似文献   
9.
微生物来源的尿酸氧化酶的研究进展及应用前景   总被引:2,自引:0,他引:2  
尿酸氧化酶是一种重要的医药用酶,它催化嘌呤代谢途径中的尿酸氧化生成尿囊素和过氧化氢,因而被广泛用于治疗痛风,检测血液尿酸浓度,预防和治疗由于肿瘤化学治疗引起的高尿酸血症。综述了尿酸氧化酶的来源、酶学性质、基因克隆与表达及其用途,并对其在应用中存在的问题和前景作了展望。  相似文献   
10.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号