首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   0篇
  国内免费   1篇
  2020年   3篇
  2019年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1994年   1篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1973年   1篇
排序方式: 共有99条查询结果,搜索用时 281 毫秒
1.
2.
The composition of the amino acid pool during spherulation was determined. It changes in size and in composition, the concentration of each amino acid behaving individually. The first response to the onset of spherulation either by starvation or osmotic shock (0.5 M mannitol) always is a decrease of the pool's size, which during further starvation expands for a short period and then decreases again. During development induces by mannitol in the presence of external amino acids, the pool size increases continuously after the initial depletion.As shown by radioactive labeling, amino acids were actively released from the plasmodium into a medium containing amino acids, but retained by the microplasmodia in an amino acid-free medium. The kinetics of the uptake of radioactive amino acids from the medium is biphasic, indicating the existence of multiple pools. Even after a labeling period of 8 h the amino acid pool is not yet in equilibrium with the medium. The possibility of a compartimentation of the pool was confirmed by density labeling of two different enzymes.Whereas the turnover of total protein is only very low during growth, it is rather high in spherulating microplasmodia. At least 70% of the originally existing protein is degraded during this development, while, simultaneously, at least 50% of the protein present after 24 h starvation is newly synthesized during that period.  相似文献   
3.
Summary The survival of M13 DNA was studied after partial replacement of thymine by uracil in the bacteriophage. Uracils carry the same genetic information as the thymines. Nevertheless in Escherichia coli wild-type cells, uracils in DNA are replaced by thymines by excision repair initiated by uracil-DNA glycosylase (UDG). Thus inactivation of uracil-containing phage DNA is solely due to repair initiated by UDG. Incorporation of uracils was achieved in one or in both strands, either randomly or site-specifically using differently uracylated oligonucleotides. The results show that up to 580 uracils can be repaired without a significant decrease in survival if the uracils are localized in the (–) strand only. Incorporation of 246 uracils into the (+) strand leads to 30% or 10% survival when expressed in Escherichia coli strains CMK and JM103, respectively. However, when uracils are distributed over both strands a sharp decrease in survival occurs. This shows that the repair of two uracils localized in close proximity on opposite strands of the DNA by the excision repair mechanism is difficult, whereas uracils occurring in one strand are repaired more efficiently, irrespective of their number.  相似文献   
4.
Resting cells of Clostridium sticklandii took up thymine or uracil, when grown in a medium containing 40 mM serine and 20 mM thymine or uracil. The uptake was much lower, when the cells had been grown in a complex medium. Cell-free extracts from cells grown in the complex medium reduced the two bases to the dihydro compounds and decomposed dihydrothymine to -ureidoisobutyrate, as indicated by thin-layer chromatography. Uptake and degradation were stimulated by both NADH and NADPH. Further breakdown did not occur, as 14CO2 was not evolved from C-2-labelled thymine or uracil. The rates of pyrimidine uptake and breakdown of C. sticklandii were lower than those reported for C. sporogenes (Hilton et al., 1975).  相似文献   
5.
6.
A recent phylogenetic study on UDG superfamily estimated a new clade of family 3 enzymes (SMUG1-like), which shares a lower homology with canonic SMUG1 enzymes. The enzymatic properties of the newly found putative DNA glycosylase are unknown. To test the potential UDG activity and evaluate phylogenetic classification, we isolated one SMUG1-like glycosylase representative from Listeria innocua (Lin). A biochemical screening of DNA glycosylase activity in vitro indicates that Lin SMUG1-like glycosylase is a single-strand selective uracil DNA glycosylase. The UDG activity on DNA bubble structures provides clue to its physiological significance in vivo. Mutagenesis and molecular modeling analyses reveal that Lin SMUG1-like glycosylase has similar functional motifs with SMUG1 enzymes; however, it contains a distinct catalytic doublet S67-S68 in motif 1 that is not found in any families in the UDG superfamily. Experimental investigation shows that the S67M-S68N double mutant is catalytically more active than either S67M or S68N single mutant. Coupled with mutual information analysis, the results indicate a high degree of correlation in the evolution of SMUG1-like enzymes. This study underscores the functional and catalytic diversity in the evolution of enzymes in UDG superfamily.  相似文献   
7.
8.
HCMV infection represents a life-threatening condition for immunocompromised patients and newborn infants and novel anti-HCMV agents are clearly needed. In this regard, a series of 1-[ω-(phenoxy)alkyl]uracil derivatives were synthesized and examined for antiviral properties. Compounds 17, 20, 24 and 28 were found to exhibit highly specific and promising inhibitory activity against HCMV replication in HEL cell cultures with EC50 values within 5.5–12 μM range. Further studies should be undertaken to elucidate the mechanism of action of these compounds and the structure–activity relationship for the linker region.  相似文献   
9.
Nucleobase ascorbate transporters (NATs), also known as Nucleobase:Cation-Symporter 2 (NCS2) proteins, belong to an evolutionary widespread family of transport proteins with members in nearly all domains of life. We present the biochemical characterization of two NAT proteins, NAT3 and NAT12 from Arabidopsis thaliana after their heterologous expression in Escherichia coli UraA knockout mutants. Both proteins were shown to transport adenine, guanine and uracil with high affinities. The apparent KM values were determined with 10.12 μM, 4.85 μM and 19.95 μM, respectively for NAT3 and 1.74 μM, 2.44 μM and 29.83 μM, respectively for NAT12. Competition studies with the three substrates suggest hypoxanthine as a further substrate of both transporters. Furthermore, the transport of nucleobases was markedly inhibited by low concentrations of a proton uncoupler indicating that NAT3 and NAT12 act as proton–nucleobase symporters. Transient expression studies of NAT-GFP fusion constructs revealed a localization of both proteins in the plasma membrane. Based on the structural information of the uracil permease UraA from E. coli, a three-dimensional experimentally validated homology model of NAT12 was created. The NAT12 structural model is composed of 14 TM segments and divided into two inverted repeats of TM1–7 and TM8–14. Docking studies and mutational analyses identified residues involved in NAT12 nucleobase binding including Ser-247, Phe-248, Asp-461, Thr-507 and Thr-508. This is the first study to provide insight into the structure–function of plant NAT proteins, which reveals differences from the other members of the NCS2 protein family.  相似文献   
10.
Phanerochaete sordida YK-624 is a hyper lignin-degrading basidiomycete possessing greater ligninolytic selectivity than either P. chrysosporium or Trametes versicolor. To construct a gene transformation system for P. sordida YK-624, uracil auxotrophic mutants were generated using a combination of ultraviolet (UV) radiation and 5-fluoroorotate resistance as a selection scheme. An uracil auxotrophic strain (UV-64) was transformed into a uracil prototroph using the marker plasmid pPsURA5 containing the orotate phosphoribosyltransferase gene from P. sordida YK-624. This system generated approximately 50 stable transformants using 2 × 107 protoplasts. Southern blot analysis demonstrated that the transformed pPsURA5 was ectopically integrated into the chromosomal DNA of all transformants. The enhanced green fluorescent protein (EGFP) gene was also introduced into UV-64. The transformed EGFP was expressed in the co-transformants driven by P. sordida glyceraldehyde-3-phosphate dehydrogenase gene promoter and terminator regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号