首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1997篇
  免费   83篇
  国内免费   45篇
  2024年   2篇
  2023年   25篇
  2022年   43篇
  2021年   54篇
  2020年   51篇
  2019年   41篇
  2018年   65篇
  2017年   39篇
  2016年   64篇
  2015年   88篇
  2014年   162篇
  2013年   207篇
  2012年   173篇
  2011年   232篇
  2010年   144篇
  2009年   87篇
  2008年   86篇
  2007年   101篇
  2006年   81篇
  2005年   73篇
  2004年   65篇
  2003年   49篇
  2002年   41篇
  2001年   14篇
  2000年   13篇
  1999年   11篇
  1998年   7篇
  1997年   18篇
  1996年   7篇
  1995年   9篇
  1994年   9篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有2125条查询结果,搜索用时 46 毫秒
1.
We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.  相似文献   
2.
Small ubiquitin-like modifier (SUMO), a member of the ubiquitin-related protein family, is covalently conjugated to lysine residues of its substrates in a process referred to as SUMOylation. SUMOylation occurs through a series of enzymatic reactions analogous to that of the ubiquitination pathway, resulting in modification of the biochemical and functional properties of substrates. To date, four mammalian SUMO isoforms, a single heterodimeric SUMO-activating E1 enzyme SAE1/SAE2, a single SUMO-conjugating E2 enzyme ubiquitin-conjugating enzyme E2I (UBC9), and a few subgroups of SUMO E3 ligases have been identified. Several SUMO E3 ligases such as topoisomerase I binding, arginine/serine-rich (TOPORS), TNF receptor-associated factor 7 (TRAF7), and tripartite motif containing 27 (TRIM27) have dual functions as ubiquitin E3 ligases. Here, we demonstrate that the ubiquitin E3 ligase UHRF2 also acts as a SUMO E3 ligase. UHRF2 effectively enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. In addition, the SUMO E3 activity of UHRF2 on ZNF131 depends on the presence of SET and RING finger-associated and nuclear localization signal-containing region domains, whereas the critical ubiquitin E3 activity RING domain is dispensable. Our findings suggest that UHRF2 has independent functional domains and regulatory mechanisms for these two distinct enzymatic activities.  相似文献   
3.
V. Speth  V. Otto  E. Schäfer 《Planta》1987,171(3):332-338
The intracellular localisation of phytochrome and ubiquitin in irradiated oat coleoptiles was analysed by electron microscopy. We applied indirect immunolabeling with polyclonal antibodies against phytochrome from etiolated oat seedlings or polyclonal antibodies against ubiquitin from rabbit reticulocytes, together with a goldcoupled second antibody, on serial ultrathin sections of resin-embedded material. Immediately after a 5-min pulse of red light-converting phytochrome from the red-absorbing (Pr) to the far-redabsorbing (Pfr) form-the label for phytochrome was found to be sequestered in electron-dense areas. For up to 2 h after irradiation, the size of these areas increased with increasing dark periods. The ubiquitin label was found in the same electrondense areas only after a dark period of 30 min. A 5 min pulse of far-red light, which reverts Pfr to Pr, given immediately after the red light did not cause the electron-dense structures to disappear; moreover, they contained the phytochrome label immediately after the far-red pulse. In contrast, after the reverting far-red light pulse, ubiquitin could only be visualised in the electron-dense areas after prolonged dark periods (i.e. 60 min). The relevance of these data to light-induced phytochrome pelletability and to the destruction of both Pr and Pfr is discussed.Abbreviations FR far-red light; Pfr - Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - R red light  相似文献   
4.
Evidence is presented that although many proteins from the fronds of Lemna minor L. undergo enhanced degradation during osmotic stress, ribulose-1,5-bisphosphate carboxylase (RuBPCase) is not degraded. Instead RuBPCase is converted in a series of steps to a very high-molecular-weight form. The first step involves the induction of an oxidase system which after 24 h of stress converts RuBPCase to an acidic and catalytically inactive form. Subsequently, the oxidised RuBPCase protein is gradually polymerized to a number of very large aggregates (molecular weight of several million).The conversion of RuBPCase to a high-molecular-weight form appears to be correlated with (i) a reduction in the number of-SH residues and (ii) the susceptibility to in-vitro proteolysis. Indeed, the number of-SH groups per RuBPCase molecule decreases from 89 in the native enzyme to 54 and 22 in the oxidised and polymerized forms, respectively. On the other hand, the oxidised enzyme is more susceptible to in-vitro proteolysis than the native form. However, it is the polymerized form of RuBPCase which is particularly susceptible to in-vitro proteolysis.Western-blotting experiments and anti-ubiquitin antibodies were used to detect the presence of ubiquitin conjugates in extracts from osmotically stressed Lemna fronds. The possible involvement of ubiquitin in the formation of the aggregates is discussed.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - FPLC fast protein liquid chromatography - kDa kilodaltons - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose bisphosphate carboxylase - SDS sodium dodecyl sulphate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
5.
6.
7.
8.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   
9.
The multiple biological functions of the small polypeptide ubiquitin are mirrored by its unparalleled conservation on the amino acid and gene organization level. During the last years, it has become widely accepted that ubiquitin is an essential component in the ATP-dependent nonlysosomal protein degradation pathway occurring in all eukaryotic organisms. As turnover, consisting of protein synthesis and disassembly, is a central and vital process for each living cell, ubiquitin-mediated proteolysis is of enormous physiological value. The components of the ubiquitin ligation system have been characterized skillfully in plant and animal cells, but at the moment many questions remain as to how the high degree of specificity that is necessary for the regulation of intracellular breakdown is ensured. The recent hypotheses and models proposed for the basic mechanisms of protein recognition, conjugation and degradation will be discussed in detail. The existence of ubiquitin-protein conjugates which are not rapidly degraded clearly suggested that the role of ubiquitin is not restricted in its implication for protein turnover. Alterations of DNA structure, specific cell recognition mechanisms and cytoskeletal variations were observed as further ubiquitin-dependent processes which are not directly coupled to protein degradation.  相似文献   
10.
A number of studies have demonstrated increased synthesis of heat shock proteins in brain following hyperthermia or transient ischemia. In the present experiments we have characterized the time course of heat shock RNA induction in gerbil brain after ischemia, and in several mouse tissues after hyperthermia, using probes for RNAs of the 70-kilodalton heat shock protein (hsp70) family, as well as ubiquitin. A synthetic oligonucleotide selective for inducible hsp70 sequences proved to be the most sensitive indicator of the stress response whereas a related rat cDNA detected both induced RNAs and constitutively expressed sequences that were not strongly inducible in brain. Considerable polymorphism of ubiquitin sequences was evident in the outbred mouse and gerbil strains used in these studies when probed with a chicken ubiquitin cDNA. Brief hyperthermic exposure resulted in striking induction of hsp70 and several-fold increases in ubiquitin RNAs in mouse liver and kidney peaking 3 h after return to room temperature. The oligonucleotide selective for hsp70 showed equivalent induction in brain that was more rapid and transient than observed in liver, whereas minimal induction was seen with the ubiquitin and hsp70-related cDNA probes. Transient ischemia resulted in 5- to 10-fold increases in hsp70 sequences in gerbil brain which peaked at 6 h recirculation and remained above control levels at 24 h, whereas a modest 70% increase in ubiquitin sequences was noted at 6 h. These results demonstrate significant temporal and quantitative differences in heat shock RNA expression between brain and other tissues following hyperthermia in vivo, and indicate that hsp70 provides a more sensitive index of the stress response in brain than does ubiquitin after both hyperthermia and ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号