首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2013年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The accumulation of DNA damage (thymine dimers and 6-4 photoproducts) induced by ultraviolet-B radiation was studied in Palmaria palmata (L.) O. Kuntze under different light and temperature conditions, using specific monoclonal antibodies and subsequent chemiluminescent detection. Both types of damage were repaired much faster under ultraviolet-A radiation (UVAR) plus photosynthetically active radiation (PAR) than in darkness, which indicates photoreactivating activity. At 12° C, all thymine dimers were repaired after 2 h irradiation with UVAR plus PAR, whereas 6-4 photoproducts were almost completely repaired after 4 h. After 19 h of darkness, almost complete repair of 6-4 photoproducts was found, and 67% of the thymine dimers were repaired. In a second set of experiments, repair of DNA damage under UVAR plus PAR was compared at three different temperatures (0, 12, and 25° C). Again, thymine dimers were repaired faster than 6-4 photoproducts at all three temperatures. At 0° C, significant repair of thymine dimers was found but not of 6-4 photoproducts. Significant repair of both thymine dimers and 6-4 photoproducts occurred at 12 and 25° C. Optimal repair efficiency was found at 25° C for thymine dimers but at 12° C for 6-4 photoproducts, which suggests that the two photorepair processes have different temperature characteristics.  相似文献   
2.
During a survey from January to March 1998, the occurrence of UV-B radiation (UVBR)- induced DNA damage in Antarctic marine phytoplankton and bacterioplankton was investigated. Sampling was done in Ryder Bay, off the British base Rothera Station, 67°S, 68°W (British Antarctic Survey). Samples were taken regularly during the survey period at fixed depths, after which DNA damage was measured in various plankton size fractions (>10, 2–10, and 0.2–2 μm). Incident solar radiation was measured using spectroradiometry, whereas attenuation of biologically effective UVBR was studied using a DNA dosimeter. A diatom bloom was found in the bay during the research period, judging from microscopic observations and HPLC analyses of taxon-specific pigments. The high phytoplankton biomass likely caused strong attenuation of DNA effective UVBR (Kbd-eff). Kbd-eff values ranged from 0.83·m 1 at the peak of the bloom to 0.47·m 1 at the end of the season. UVBR-mediated DNA damage, as measured by cyclobutane pyrimidine dimer (CPD) abundance, was detected in all plankton size fractions. Highest levels were found in the smallest size fraction, mainly consisting of heterotrophic bacteria. Clear CPD depth profiles were found during mid-summer (January, beginning of February) with surface levels exceeding 100 CPDs per million nucleotides in the bacterioplankton fraction. At that time, melting of the continuously present shelf ice caused strong salinity gradients in the upper meters, thereby stimulating water column stabilization. At the end of February and beginning of March, this phenomenon was less pronounced or absent. At that time, DNA damage was homogeneously distributed over the first 10 m, ranging between 20 and 30 CPDs per million nucleotides for the smallest size fraction.  相似文献   
3.
The temperature dependence of UV effects was studied for Arctic and temperate isolates of the red macrophytes Palmaria palmata, Coccotylus truncatus and Phycodrys rubens. The effects of daily repeated artificial ultraviolet B and A radiation (UVBR: 280–320?nm, UVAR: 320–400?nm) treatments were examined for all isolates at 6, 12 and 18?°C by measuring growth, optimal quantum yield of PSII (Fv/Fm) and cyclobutane-pyrimidine dimer (CPD) accumulation. Furthermore, possible ecotypic differences in UV sensitivity between Arctic and temperate isolates were evaluated. Large species-specific differences in UV sensitivity were observed for all parameters: the lower subtidal species C. truncatus and P. rubens were highly sensitive to the UV treatments, whereas P. palmata, which predominantly occurs in the upper subtidal zone, was not affected by these treatments. Only minor differences were found between Arctic and temperate isolates, suggesting that no differences in UV sensitivity have evolved in these species. Relative growth rates were temperature-dependent, whereas species-specific UV effects on growth rates were relatively independent of temperature. In contrast, the species-specific decrease in Fv/Fm and its subsequent recovery were temperature-dependent in all species. UV effects on Fv/Fm were lower at 12 and 18?°C compared with 6?°C. In addition, UV effects on Fv/Fm decreased in the course of the experiment at all temperatures, indicating acclimation to the UV treatments. CPDs accumulated during the experiment in both isolates of P. rubens, whereas CPD concentrations remained low for the other two species. CPD accumulation appeared to be independent of temperature. The results suggest that summer temperatures occurring in temperate regions facilitate repair of UV-induced damage and acclimation to UV radiation in these algae compared with Arctic temperatures. Because the differences in UV effects on Fv/Fm, growth and CPD accumulation were relatively small over a broad range of temperatures, it was concluded that the influence of temperature on UV effects is small in these species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号