首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   3篇
  2000年   1篇
  1996年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Summary Selection of spontaneous mutants ofNocardia lactamdurans MA2908 for resistance to 5-fluorouracil results in the simultaneous development of resistance to 5-fluorouridine. The resulting mutants fall into four distinct classes based on the amount of uracil accumulating in fermentation broths. An additional characteristic of these mutants is a reduction in the ability to incorporate exogenous uracil into nucleic acids even though transport and conversion to the nucleotide level appears normal. Finally, production of efrotomycin is increased in these mutants in both chemically defined and complex fermentation media to levels equivalent to those of MA4820, the first productivity mutant isolated in a conventional strain improvement program. Resistance development and uracil excretion are adequately explained by an elevation of the intracellular uridine nucleotide pool, in particular UMP. The role of the uridine necleotides in the efrotomycin fermentation is unknown.  相似文献   
2.
3.
4.
Uridine monophosphate (UMP) kinase is a conserved enzyme that catalyzes the ATP-driven conversion of uridylate monophosphate into uridylate diphosphate, an essential metabolic step. In prokaryotes, the enzyme exists as a homohexamer that is regulated by various metabolites. Whereas the enzymatic mechanism of UMP kinase (UK) is well-characterized, the molecular basis of its regulation remains poorly understood. Here we report the crystal structure of UK from Bacillus anthracis (BA1797) in complex with ATP at 2.82 Å resolution. It reveals that the cofactor, in addition to binding in the active sites, also interacts with separate binding pockets located near the center of the hexameric structure. The existence of such an allosteric binding site had been predicted by biochemical studies, but it was not identified in previous crystal structures of prokaryotic UKs. We show that this putative allosteric pocket is conserved across different bacterial species, suggesting that it is a feature common to bacterial UKs, and we present a structural model for the allosteric regulation of this enzyme.  相似文献   
5.
TAKEUCHI (1969) provides a uniformly most powerful (UMP) one side test for testing the location parameter of the two parameters exponential model when the scale parameter is unknown. The power of his similar size α test depends, however, on the unknown scale parameter. In this case and in more general situations when there exists a sufficient statistic for the nuisance parameter, the theory of generalized THOMPSON's distributions, more specifically, the Thompsonization of a test statistic, LAURENT (1959, 1972) provides a UMP test whose power does not depend on the nuisance parameter. Examples of application of the general nuisance parameter free test procedure include here the truncated exponential, the inverse Gaussian, and the geometric distributions.  相似文献   
6.
All six enzymes of pyrimidine biosynthesis de novo have been detected in homogenates of the culture promastigote form of Leishmania mexicana amazonensis, the blood trypomastigote form of Trypanosoma brucei and the culture epimastigote, blood trypomastigote and intracellular form of Trypanosoma cruzi. Dihydroorotate dehydrogenase is mitochondrial in mammals, but the isofunctional enzyme, dihydroorotate oxidase was found to be cytoplasmi, whereas orotate phosphoribosyltransferase and orotidine-5′-phosphate decarboxylase, which are cytoplasmic in mammals, were found to be particulate. Analysis by isopycnic sedimentation in sucrose showed that both particulate enzymes co-sedimented with glycosomal-(microbody-)marker enzymes such as hexokinase. Electron microscopy indicated that fractions containing these activities consisted essentially only of microbodies. It is concluded therefore that these enzymes are associated with glycosomes. Kinetic studies with intact glycosomal preparations suggested that there was no membrane barrier between 5-phosphoribose 1-pyrophosphate (P-Rib-PP) and orotate phosphoribosyltransferase, indicating either that the active site of this enzyme is probably on the outside of the glycosome or that the glycosome may have an efficient transport site for P-Rib-PP. Not all the UMP salvage enzymes assayed were detected. No uridine kinase activity was found in any of the species investigated, suggesting that uridine salvage might be routed via a uridine phosphoribosyltransferase. In agreement with this suggestion, these latter activities were detected in all organisms tested except the intracellular amastigote form of T. cruzi, where uracil phosphoribosyltransferase appeared absent. All the UMP salvage enzymes investigated occurred in cytoplamic fractions.  相似文献   
7.
The final two steps of de novo uridine 5'-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.  相似文献   
8.
Galactofuranose (Galf) residues are present in cell wall glycoconjugates of numerous pathogenic microbes. Uridine 5'-diphosphate (UDP) Galf, the biosynthetic precursor of Galf-containing glycoconjugates, is produced from UDP-galactopyranose (UDP-Galp) by the flavoenzyme UDP-galactopyranose mutase (UGM). The gene encoding UGM (glf) is essential for the viability of pathogens, including Mycobacterium tuberculosis, and this finding underscores the need to understand how UGM functions. Considerable effort has been devoted to elucidating the catalytic mechanism of UGM, but progress has been hindered by a lack of structural data for an enzyme-substrate complex. Such data could reveal not only substrate binding interactions but how UGM can act preferentially on two very different substrates, UDP-Galp and UDP-Galf, yet avoid other structurally related UDP sugars present in the cell. Herein, we describe the first structure of a UGM-ligand complex, which provides insight into the catalytic mechanism and molecular basis for substrate selectivity. The structure of UGM from Klebsiella pneumoniae bound to the substrate analog UDP-glucose (UDP-Glc) was solved by X-ray crystallographic methods and refined to 2.5 Å resolution. The ligand is proximal to the cofactor, a finding that is consistent with a proposed mechanism in which the reduced flavin engages in covalent catalysis. Despite this proximity, the glucose ring of the substrate analog is positioned such that it disfavors covalent catalysis. This orientation is consistent with data indicating that UDP-Glc is not a substrate for UGM. The relative binding orientations of UDP-Galp and UDP-Glc were compared using saturation transfer difference NMR. The results indicate that the uridine moiety occupies a similar location in both ligand complexes, and this relevant binding mode is defined by our structural data. In contrast, the orientations of the glucose and galactose sugar moieties differ. To understand the consequences of these differences, we derived a model for the productive UGM-substrate complex that highlights interactions that can contribute to catalysis and substrate discrimination.  相似文献   
9.
Summary In the cellular slime mould Dictyostelium discoideum the two enzymatic activities of the pyrimidine pathway, orotidine-5-phosphate decarboxylase (EC 4.1.1.23; OMPdecase) and orotate phosphoribosyl transferase (EC 2.4.2.10; OPRTase), are encoded by a single gene (DdPYR5-6). As in higher eukaryotes the bifunctional enzyme is referred to as UMP synthase. Here we present a method that allows efficient generation and selection of mutants lacking UMP synthase. D. discoideum cells are transformed with either of two different types of plasmids. One plasmid type contains no sequences homologous to the UMP synthase gene whereas the other type contains at least parts of this gene. UMP synthase mutants, which were positively selected for in the presence of 5-fluoroorotic acid (5-FOA), were obtained with both plasmids. However, mutation rates were at least one order of magnitude higher if plasmids containing various portions of the UMP synthase gene were used as opposed to plasmids that lack any homology to the UMP synthase locus. Several mutant strains were extensively characterized. These strains lack OMPdecase activity and exhibit in addition to 5-FOA resistance a ura phenotype. All mutants carry UMP synthase loci with deletions of various extents but integration of transforming plasmids was not detected. This efficient generation of 5-FOA resistance is part of a proposed complex selection scheme which allows multiple rounds of transformation of D. discoideum.  相似文献   
10.
UMP synthase was characterized biochemically in dairy cattle heterozygous for a deficiency of this enzyme. Both activities comprising this bifunctional enzyme are decreased, with OMP decarboxylase more affected than orotate phosphoribosyltransferase. Immunotitration of UMP synthase activity revealed the presence of the protein product of the mutant allele in the heterozygous animals. UMP synthases from normal and deficient cattle were not distinguished from one another by kinetic constants, responses to inhibitors, pH profiles, or thermal lability. It was concluded that the 50% reduction in enzyme activity in heterozygous cattle is the result of the presence of only half the normal level of catalytically active UMP synthase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号